Skip to content

test: add python implementation of Elligator squared #10

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 3 commits into from
Aug 4, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
163 changes: 163 additions & 0 deletions test/functional/test_framework/ellswift.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,163 @@
#!/usr/bin/env python3
# Copyright (c) 2022 The Bitcoin Core developers
# Distributed under the MIT software license, see the accompanying
# file COPYING or http://www.opensource.org/licenses/mit-license.php.
"""Test-only Elligator Swift implementation

WARNING: This code is slow and uses bad randomness.
Do not use for anything but tests."""

import csv
import os
import random
import unittest

from test_framework.secp256k1 import FE, G, GE

# Precomputed constant square root of -3 (mod p).
MINUS_3_SQRT = FE(-3).sqrt()

def xswiftec(u, t):
"""Decode field elements (u, t) to an X coordinate on the curve."""
if u == 0:
u = FE(1)
if t == 0:
t = FE(1)
if u**3 + t**2 + 7 == 0:
t = 2 * t
X = (u**3 + 7 - t**2) / (2 * t)
Y = (X + t) / (MINUS_3_SQRT * u)
for x in (u + 4 * Y**2, (-X / Y - u) / 2, (X / Y - u) / 2):
if GE.is_valid_x(x):
return x
assert False

def xswiftec_inv(x, u, case):
"""Given x and u, find t such that xswiftec(u, t) = x, or return None.

Case selects which of the up to 8 results to return."""

if case & 2 == 0:
if GE.is_valid_x(-x - u):
return None
v = x
s = -(u**3 + 7) / (u**2 + u*v + v**2)
else:
s = x - u
if s == 0:
return None
r = (-s * (4 * (u**3 + 7) + 3 * s * u**2)).sqrt()
if r is None:
return None
if case & 1 and r == 0:
return None
v = (-u + r / s) / 2
w = s.sqrt()
if w is None:
return None
if case & 5 == 0:
return -w * (u * (1 - MINUS_3_SQRT) / 2 + v)
if case & 5 == 1:
return w * (u * (1 + MINUS_3_SQRT) / 2 + v)
if case & 5 == 4:
return w * (u * (1 - MINUS_3_SQRT) / 2 + v)
if case & 5 == 5:
return -w * (u * (1 + MINUS_3_SQRT) / 2 + v)

def xelligatorswift(x):
"""Given a field element X on the curve, find (u, t) that encode them."""
assert GE.is_valid_x(x)
while True:
u = FE(random.randrange(1, FE.SIZE))
case = random.randrange(0, 8)
t = xswiftec_inv(x, u, case)
if t is not None:
return u, t

def ellswift_create():
"""Generate a (privkey, ellswift_pubkey) pair."""
priv = random.randrange(1, GE.ORDER)
u, t = xelligatorswift((priv * G).x)
return priv.to_bytes(32, 'big'), u.to_bytes() + t.to_bytes()

def ellswift_ecdh_xonly(pubkey_theirs, privkey):
"""Compute X coordinate of shared ECDH point between ellswift pubkey and privkey."""
u = FE(int.from_bytes(pubkey_theirs[:32], 'big'))
t = FE(int.from_bytes(pubkey_theirs[32:], 'big'))
d = int.from_bytes(privkey, 'big')
return (d * GE.lift_x(xswiftec(u, t))).x.to_bytes()


class TestFrameworkEllSwift(unittest.TestCase):
def test_xswiftec(self):
"""Verify that xswiftec maps all inputs to the curve."""
for _ in range(32):
u = FE(random.randrange(0, FE.SIZE))
t = FE(random.randrange(0, FE.SIZE))
x = xswiftec(u, t)
self.assertTrue(GE.is_valid_x(x))

# Check that inputs which are considered undefined in the original
# SwiftEC paper can also be decoded successfully (by remapping)
undefined_inputs = [
(FE(0), FE(23)), # u = 0
(FE(42), FE(0)), # t = 0
(FE(5), FE(-132).sqrt()), # u^3 + t^2 + 7 = 0
]
assert undefined_inputs[-1][0]**3 + undefined_inputs[-1][1]**2 + 7 == 0
for u, t in undefined_inputs:
x = xswiftec(u, t)
self.assertTrue(GE.is_valid_x(x))

def test_elligator_roundtrip(self):
"""Verify that encoding using xelligatorswift decodes back using xswiftec."""
for _ in range(32):
while True:
# Loop until we find a valid X coordinate on the curve.
x = FE(random.randrange(1, FE.SIZE))
if GE.is_valid_x(x):
break
# Encoding it to (u, t), decode it back, and compare.
u, t = xelligatorswift(x)
x2 = xswiftec(u, t)
self.assertEqual(x2, x)

def test_ellswift_ecdh_xonly(self):
"""Verify that shared secret computed by ellswift_ecdh_xonly match."""
for _ in range(32):
privkey1, encoding1 = ellswift_create()
privkey2, encoding2 = ellswift_create()
shared_secret1 = ellswift_ecdh_xonly(encoding1, privkey2)
shared_secret2 = ellswift_ecdh_xonly(encoding2, privkey1)
self.assertEqual(shared_secret1, shared_secret2)

def test_elligator_encode_testvectors(self):
"""Implement the BIP324 test vectors for ellswift encoding (read from xswiftec_inv_test_vectors.csv)."""
vectors_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'xswiftec_inv_test_vectors.csv')
with open(vectors_file, newline='', encoding='utf8') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
u = FE.from_bytes(bytes.fromhex(row['u']))
x = FE.from_bytes(bytes.fromhex(row['x']))
for case in range(8):
ret = xswiftec_inv(x, u, case)
if ret is None:
self.assertEqual(row[f"case{case}_t"], "")
else:
self.assertEqual(row[f"case{case}_t"], ret.to_bytes().hex())
self.assertEqual(xswiftec(u, ret), x)

def test_elligator_decode_testvectors(self):
"""Implement the BIP324 test vectors for ellswift decoding (read from ellswift_decode_test_vectors.csv)."""
vectors_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), 'ellswift_decode_test_vectors.csv')
with open(vectors_file, newline='', encoding='utf8') as csvfile:
reader = csv.DictReader(csvfile)
for row in reader:
encoding = bytes.fromhex(row['ellswift'])
assert len(encoding) == 64
expected_x = FE(int(row['x'], 16))
u = FE(int.from_bytes(encoding[:32], 'big'))
t = FE(int.from_bytes(encoding[32:], 'big'))
x = xswiftec(u, t)
self.assertEqual(x, expected_x)
self.assertTrue(GE.is_valid_x(x))
Loading