Skip to content

Commit 53141ba

Browse files
committed
docs: update eqn divs
--- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: passed - task: lint_package_json status: na - task: lint_repl_help status: na - task: lint_javascript_src status: na - task: lint_javascript_cli status: na - task: lint_javascript_examples status: na - task: lint_javascript_tests status: na - task: lint_javascript_benchmarks status: na - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: na - task: lint_c_examples status: na - task: lint_c_benchmarks status: na - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: na - task: lint_typescript_tests status: na - task: lint_license_headers status: passed ---
1 parent 5f561b2 commit 53141ba

File tree

1 file changed

+50
-53
lines changed
  • lib/node_modules/@stdlib/lapack/base/dgttrf

1 file changed

+50
-53
lines changed

lib/node_modules/@stdlib/lapack/base/dgttrf/README.md

Lines changed: 50 additions & 53 deletions
Original file line numberDiff line numberDiff line change
@@ -38,37 +38,37 @@ A = L U
3838

3939
where `L` is a product of permutation and unit lower bidiagonal matrices and `U` is upper triangular with nonzeros in only the main diagonal and first two superdiagonals.
4040

41-
For a tridiagonal matrix `A`, its elements are stored in three arrays:
41+
For a 5 x 5 tridiagonal matrix `A`, its elements are stored in three arrays:
4242

4343
<!-- <equation class="equation" label="eq:matrix_a" align="center" raw="A = \left[
4444
\begin{array}{rrrrr}
45-
d_1 & du_1 & 0 & \cdots & 0 \\
46-
dl_1 & d_2 & du_2 & \ddots & \vdots \\
47-
0 & dl_2 & d_3 & \ddots & 0 \\
48-
\vdots & \ddots & \ddots & \ddots & du_{n-1} \\
49-
0 & \cdots & 0 & dl_{n-1} & d_n
45+
d_1 & du_1 & 0 & 0 & 0 \\
46+
dl_1 & d_2 & du_2 & 0 & 0 \\
47+
0 & dl_2 & d_3 & du_3 & 0 \\
48+
0 & 0 & dl_3 & d_4 & du_4 \\
49+
0 & 0 & 0 & dl_4 & d_5
5050
\end{array}
5151
\right]" alt="Representation of matrix A."> -->
5252

5353
```math
5454
A = \left[
5555
\begin{array}{rrrrr}
56-
d_1 & du_1 & 0 & \cdots & 0 \\
57-
dl_1 & d_2 & du_2 & \ddots & \vdots \\
58-
0 & dl_2 & d_3 & \ddots & 0 \\
59-
\vdots & \ddots & \ddots & \ddots & du_{n-1} \\
60-
0 & \cdots & 0 & dl_{n-1} & d_n
56+
d_1 & du_1 & 0 & 0 & 0 \\
57+
dl_1 & d_2 & du_2 & 0 & 0 \\
58+
0 & dl_2 & d_3 & du_3 & 0 \\
59+
0 & 0 & dl_3 & d_4 & du_4 \\
60+
0 & 0 & 0 & dl_4 & d_5
6161
\end{array}
6262
\right]
6363
```
6464

6565
<!-- <div class="equation" align="center" data-raw-text="A = \left[
6666
\begin{array}{rrrrr}
67-
d_1 & du_1 & 0 & \cdots & 0 \\
68-
dl_1 & d_2 & du_2 & \ddots & \vdots \\
69-
0 & dl_2 & d_3 & \ddots & 0 \\
70-
\vdots & \ddots & \ddots & \ddots & du_{n-1} \\
71-
0 & \cdots & 0 & dl_{n-1} & d_n
67+
d_1 & du_1 & 0 & 0 & 0 \\
68+
dl_1 & d_2 & du_2 & 0 & 0 \\
69+
0 & dl_2 & d_3 & du_3 & 0 \\
70+
0 & 0 & dl_3 & d_4 & du_4 \\
71+
0 & 0 & 0 & dl_4 & d_5
7272
\end{array}
7373
\right]" data-equation="eq:matrix_a"></div> -->
7474

@@ -90,77 +90,74 @@ The resulting `L` and `U` matrices have the following structure:
9090

9191
<!-- <equation class="equation" label="eq:matrix_l" align="center" raw="L = \left[
9292
\begin{array}{rrrrr}
93-
1 & 0 & \cdots & \cdots & 0 \\
94-
l_1 & 1 & \ddots & \ddots & \vdots \\
95-
0 & l_2 & 1 & \ddots & \vdots \\
96-
\vdots & \ddots & \ddots & \ddots & 0 \\
97-
0 & \cdots & 0 & l_{n-1} & 1
93+
1 & 0 & 0 & 0 & 0 \\
94+
l_1 & 1 & 0 & 0 & 0 \\
95+
0 & l_2 & 1 & 0 & 0 \\
96+
0 & 0 & l_3 & 1 & 0 \\
97+
0 & 0 & 0 & l_4 & 1
9898
\end{array}
9999
\right]" alt="Representation of matrix L as derived from DL."> -->
100100

101101
```math
102102
L = \left[
103103
\begin{array}{rrrrr}
104-
1 & 0 & \cdots & \cdots & 0 \\
105-
l_1 & 1 & \ddots & \ddots & \vdots \\
106-
0 & l_2 & 1 & \ddots & \vdots \\
107-
\vdots & \ddots & \ddots & \ddots & 0 \\
108-
0 & \cdots & 0 & l_{n-1} & 1
104+
1 & 0 & 0 & 0 & 0 \\
105+
l_1 & 1 & 0 & 0 & 0 \\
106+
0 & l_2 & 1 & 0 & 0 \\
107+
0 & 0 & l_3 & 1 & 0 \\
108+
0 & 0 & 0 & l_4 & 1
109109
\end{array}
110110
\right]
111111
```
112112

113113
<!-- <div class="equation" align="center" data-raw-text="L = \left[
114114
\begin{array}{rrrrr}
115-
1 & 0 & \cdots & \cdots & 0 \\
116-
l_1 & 1 & \ddots & \ddots & \vdots \\
117-
0 & l_2 & 1 & \ddots & \vdots \\
118-
\vdots & \ddots & \ddots & \ddots & 0 \\
119-
0 & \cdots & 0 & l_{n-1} & 1
115+
1 & 0 & 0 & 0 & 0 \\
116+
l_1 & 1 & 0 & 0 & 0 \\
117+
0 & l_2 & 1 & 0 & 0 \\
118+
0 & 0 & l_3 & 1 & 0 \\
119+
0 & 0 & 0 & l_4 & 1
120120
\end{array}
121121
\right]" data-equation="eq:matrix_l"></div> -->
122122

123123
<!-- </equation> -->
124124

125125
<!-- <equation class="equation" label="eq:matrix_u" align="center" raw="U = \left[
126-
\begin{array}{rrrrrr}
127-
u_{1,1} & u_{1,2} & u_{1,3} & 0 & \cdots & 0 \\
128-
0 & u_{2,2} & u_{2,3} & u_{2,4} & \ddots & \vdots \\
129-
\vdots & \ddots & u_{3,3} & u_{3,4} & \ddots & 0 \\
130-
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-2,n} \\
131-
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-1,n} \\
132-
0 & \cdots & \cdots & \cdots & 0 & u_{n,n}
126+
\begin{array}{rrrrr}
127+
u_{1,1} & u_{1,2} & u_{1,3} & 0 & 0 \\
128+
0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
129+
0 & 0 & u_{3,3} & u_{3,4} & u_{3,5} \\
130+
0 & 0 & 0 & u_{4,4} & u_{4,5} \\
131+
0 & 0 & 0 & 0 & u_{5,5}
133132
\end{array}
134133
\right]" alt="Representation of matrix U as derived from D, DU, DU2."> -->
135134

136135
```math
137136
U = \left[
138-
\begin{array}{rrrrrr}
139-
u_{1,1} & u_{1,2} & u_{1,3} & 0 & \cdots & 0 \\
140-
0 & u_{2,2} & u_{2,3} & u_{2,4} & \ddots & \vdots \\
141-
\vdots & \ddots & u_{3,3} & u_{3,4} & \ddots & 0 \\
142-
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-2,n} \\
143-
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-1,n} \\
144-
0 & \cdots & \cdots & \cdots & 0 & u_{n,n}
137+
\begin{array}{rrrrr}
138+
u_{1,1} & u_{1,2} & u_{1,3} & 0 & 0 \\
139+
0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
140+
0 & 0 & u_{3,3} & u_{3,4} & u_{3,5} \\
141+
0 & 0 & 0 & u_{4,4} & u_{4,5} \\
142+
0 & 0 & 0 & 0 & u_{5,5}
145143
\end{array}
146144
\right]
147145
```
148146

149147

150148
<!-- <div class="equation" align="center" data-raw-text="U = \left[
151-
\begin{array}{rrrrrr}
152-
u_{1,1} & u_{1,2} & u_{1,3} & 0 & \cdots & 0 \\
153-
0 & u_{2,2} & u_{2,3} & u_{2,4} & \ddots & \vdots \\
154-
\vdots & \ddots & u_{3,3} & u_{3,4} & \ddots & 0 \\
155-
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-2,n} \\
156-
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-1,n} \\
157-
0 & \cdots & \cdots & \cdots & 0 & u_{n,n}
149+
\begin{array}{rrrrr}
150+
u_{1,1} & u_{1,2} & u_{1,3} & 0 & 0 \\
151+
0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
152+
0 & 0 & u_{3,3} & u_{3,4} & u_{3,5} \\
153+
0 & 0 & 0 & u_{4,4} & u_{4,5} \\
154+
0 & 0 & 0 & 0 & u_{5,5}
158155
\end{array}
159156
\right]" data-equation="eq:matrix_u"></div> -->
160157

161158
<!-- </equation> -->
162159

163-
where the `l_i` values are stored in `DL`, the diagonal elements `u_{i,i}` are stored in `D`, and the superdiagonal elements `u_{i,i+1}` and `u_{i,i+2}` are stored in `DU` and `DU2` respectively.
160+
where the `l(i)` values are stored in `DL`, the diagonal elements `u(i,i)` are stored in `D`, and the superdiagonal elements `u(i,i+1)` and `u(i,i+2)` are stored in `DU` and `DU2` respectively.
164161

165162
</section>
166163

0 commit comments

Comments
 (0)