@@ -40,31 +40,37 @@ where `L` is a product of permutation and unit lower bidiagonal matrices and `U`
40
40
41
41
For a tridiagonal matrix ` A ` , its elements are stored in three arrays:
42
42
43
- <!-- <equation class="equation" label="eq:matrix_a" align="center" raw="A = \begin{bmatrix}
44
- d_1 & du_1 & 0 & \cdots & 0 \\
45
- dl_1 & d_2 & du_2 & \cdots & 0 \\
46
- 0 & dl_2 & d_3 & \ddots & \vdots \\
47
- \vdots & \ddots & \ddots & \ddots & du_{n-1}\\
48
- 0 & \cdots & 0 & dl_{n-1} & d_n
49
- \end{bmatrix}" alt="Representation of matrix A."> -->
43
+ <!-- <equation class="equation" label="eq:matrix_a" align="center" raw="A = \left[
44
+ \begin{array}{rrrrr}
45
+ d_1 & du_1 & 0 & \cdots & 0 \\
46
+ dl_1 & d_2 & du_2 & \ddots & \vdots \\
47
+ 0 & dl_2 & d_3 & \ddots & 0 \\
48
+ \vdots & \ddots & \ddots & \ddots & du_{n-1} \\
49
+ 0 & \cdots & 0 & dl_{n-1} & d_n
50
+ \end{array}
51
+ \right]" alt="Representation of matrix A."> -->
50
52
51
53
``` math
52
- A = \begin{bmatrix}
53
- d_1 & du_1 & 0 & \cdots & 0 \\
54
- dl_1 & d_2 & du_2 & \cdots & 0 \\
55
- 0 & dl_2 & d_3 & \ddots & \vdots \\
56
- \vdots & \ddots & \ddots & \ddots & du_{n-1}\\
57
- 0 & \cdots & 0 & dl_{n-1} & d_n
58
- \end{bmatrix}
54
+ A = \left[
55
+ \begin{array}{rrrrr}
56
+ d_1 & du_1 & 0 & \cdots & 0 \\
57
+ dl_1 & d_2 & du_2 & \ddots & \vdots \\
58
+ 0 & dl_2 & d_3 & \ddots & 0 \\
59
+ \vdots & \ddots & \ddots & \ddots & du_{n-1} \\
60
+ 0 & \cdots & 0 & dl_{n-1} & d_n
61
+ \end{array}
62
+ \right]
59
63
```
60
64
61
- <!-- <div class="equation" align="center" data-raw-text="A = \begin{bmatrix}
62
- d_1 & du_1 & 0 & \cdots & 0 \\
63
- dl_1 & d_2 & du_2 & \cdots & 0 \\
64
- 0 & dl_2 & d_3 & \ddots & \vdots \\
65
- \vdots & \ddots & \ddots & \ddots & du_{n-1}\\
66
- 0 & \cdots & 0 & dl_{n-1} & d_n
67
- \end{bmatrix}" data-equation="eq:matrix_a"></div> -->
65
+ <!-- <div class="equation" align="center" data-raw-text="A = \left[
66
+ \begin{array}{rrrrr}
67
+ d_1 & du_1 & 0 & \cdots & 0 \\
68
+ dl_1 & d_2 & du_2 & \ddots & \vdots \\
69
+ 0 & dl_2 & d_3 & \ddots & 0 \\
70
+ \vdots & \ddots & \ddots & \ddots & du_{n-1} \\
71
+ 0 & \cdots & 0 & dl_{n-1} & d_n
72
+ \end{array}
73
+ \right]" data-equation="eq:matrix_a"></div> -->
68
74
69
75
<!-- </equation> -->
70
76
@@ -82,59 +88,75 @@ After factorization, the elements of `L` and `U` overwrite the input arrays, whe
82
88
83
89
The resulting ` L ` and ` U ` matrices have the following structure:
84
90
85
- <!-- <equation class="equation" label="eq:matrix_l" align="center" raw="L = \begin{bmatrix}
86
- 1 & 0 & 0 & \cdots & 0 \\
87
- l_1 & 1 & 0 & \cdots & 0 \\
91
+ <!-- <equation class="equation" label="eq:matrix_l" align="center" raw="L = \left[
92
+ \begin{array}{rrrrr}
93
+ 1 & 0 & \cdots & \cdots & 0 \\
94
+ l_1 & 1 & \ddots & \ddots & \vdots \\
88
95
0 & l_2 & 1 & \ddots & \vdots \\
89
- \vdots & \ddots & \ddots & \ddots & 0 \\
96
+ \vdots & \ddots & \ddots & \ddots & 0 \\
90
97
0 & \cdots & 0 & l_{n-1} & 1
91
- \end{bmatrix}" alt="Representation of matrix L as derived from DL."> -->
98
+ \end{array}
99
+ \right]" alt="Representation of matrix L as derived from DL."> -->
92
100
93
101
``` math
94
- L = \begin{bmatrix}
95
- 1 & 0 & 0 & \cdots & 0 \\
96
- l_1 & 1 & 0 & \cdots & 0 \\
102
+ L = \left[
103
+ \begin{array}{rrrrr}
104
+ 1 & 0 & \cdots & \cdots & 0 \\
105
+ l_1 & 1 & \ddots & \ddots & \vdots \\
97
106
0 & l_2 & 1 & \ddots & \vdots \\
98
- \vdots & \ddots & \ddots & \ddots & 0 \\
107
+ \vdots & \ddots & \ddots & \ddots & 0 \\
99
108
0 & \cdots & 0 & l_{n-1} & 1
100
- \end{bmatrix}
109
+ \end{array}
110
+ \right]
101
111
```
102
112
103
- <!-- <div class="equation" align="center" data-raw-text="L = \begin{bmatrix}
104
- 1 & 0 & 0 & \cdots & 0 \\
105
- l_1 & 1 & 0 & \cdots & 0 \\
113
+ <!-- <div class="equation" align="center" data-raw-text="L = \left[
114
+ \begin{array}{rrrrr}
115
+ 1 & 0 & \cdots & \cdots & 0 \\
116
+ l_1 & 1 & \ddots & \ddots & \vdots \\
106
117
0 & l_2 & 1 & \ddots & \vdots \\
107
- \vdots & \ddots & \ddots & \ddots & 0 \\
118
+ \vdots & \ddots & \ddots & \ddots & 0 \\
108
119
0 & \cdots & 0 & l_{n-1} & 1
109
- \end{bmatrix}" data-equation="eq:matrix_l"></div> -->
120
+ \end{array}
121
+ \right]" data-equation="eq:matrix_l"></div> -->
110
122
111
123
<!-- </equation> -->
112
124
113
- <!-- <equation class="equation" label="eq:matrix_u" align="center" raw="U = \begin{bmatrix}
114
- u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 0 \\
115
- 0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
116
- 0 & 0 & u_{3,3} & \ddots & \ddots \\
117
- \vdots & \vdots & \ddots & \ddots & u_{n-1,n}\\
118
- 0 & 0 & \cdots & 0 & u_{n,n}
119
- \end{bmatrix}" alt="Representation of matrix U as derived from D, DU, DU2."> -->
125
+ <!-- <equation class="equation" label="eq:matrix_u" align="center" raw="U = \left[
126
+ \begin{array}{rrrrrr}
127
+ u_{1,1} & u_{1,2} & u_{1,3} & 0 & \cdots & 0 \\
128
+ 0 & u_{2,2} & u_{2,3} & u_{2,4} & \ddots & \vdots \\
129
+ \vdots & \ddots & u_{3,3} & u_{3,4} & \ddots & 0 \\
130
+ \vdots & \ddots & \ddots & \ddots & \ddots & u_{n-2,n} \\
131
+ \vdots & \ddots & \ddots & \ddots & \ddots & u_{n-1,n} \\
132
+ 0 & \cdots & \cdots & \cdots & 0 & u_{n,n}
133
+ \end{array}
134
+ \right]" alt="Representation of matrix U as derived from D, DU, DU2."> -->
120
135
121
136
``` math
122
- U = \begin{bmatrix}
123
- u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 0 \\
124
- 0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
125
- 0 & 0 & u_{3,3} & \ddots & \ddots \\
126
- \vdots & \vdots & \ddots & \ddots & u_{n-1,n}\\
127
- 0 & 0 & \cdots & 0 & u_{n,n}
128
- \end{bmatrix}
137
+ U = \left[
138
+ \begin{array}{rrrrrr}
139
+ u_{1,1} & u_{1,2} & u_{1,3} & 0 & \cdots & 0 \\
140
+ 0 & u_{2,2} & u_{2,3} & u_{2,4} & \ddots & \vdots \\
141
+ \vdots & \ddots & u_{3,3} & u_{3,4} & \ddots & 0 \\
142
+ \vdots & \ddots & \ddots & \ddots & \ddots & u_{n-2,n} \\
143
+ \vdots & \ddots & \ddots & \ddots & \ddots & u_{n-1,n} \\
144
+ 0 & \cdots & \cdots & \cdots & 0 & u_{n,n}
145
+ \end{array}
146
+ \right]
129
147
```
130
148
131
- <!-- <div class="equation" align="center" data-raw-text="U = \begin{bmatrix}
132
- u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 0 \\
133
- 0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
134
- 0 & 0 & u_{3,3} & \ddots & \ddots \\
135
- \vdots & \vdots & \ddots & \ddots & u_{n-1,n}\\
136
- 0 & 0 & \cdots & 0 & u_{n,n}
137
- \end{bmatrix}" data-equation="eq:matrix_u"></div> -->
149
+
150
+ <!-- <div class="equation" align="center" data-raw-text="U = \left[
151
+ \begin{array}{rrrrrr}
152
+ u_{1,1} & u_{1,2} & u_{1,3} & 0 & \cdots & 0 \\
153
+ 0 & u_{2,2} & u_{2,3} & u_{2,4} & \ddots & \vdots \\
154
+ \vdots & \ddots & u_{3,3} & u_{3,4} & \ddots & 0 \\
155
+ \vdots & \ddots & \ddots & \ddots & \ddots & u_{n-2,n} \\
156
+ \vdots & \ddots & \ddots & \ddots & \ddots & u_{n-1,n} \\
157
+ 0 & \cdots & \cdots & \cdots & 0 & u_{n,n}
158
+ \end{array}
159
+ \right]" data-equation="eq:matrix_u"></div> -->
138
160
139
161
<!-- </equation> -->
140
162
0 commit comments