Skip to content

Commit 5f561b2

Browse files
committed
chore: update tex eqns
--- type: pre_commit_static_analysis_report description: Results of running static analysis checks when committing changes. report: - task: lint_filenames status: passed - task: lint_editorconfig status: passed - task: lint_markdown status: passed - task: lint_package_json status: na - task: lint_repl_help status: na - task: lint_javascript_src status: na - task: lint_javascript_cli status: na - task: lint_javascript_examples status: na - task: lint_javascript_tests status: na - task: lint_javascript_benchmarks status: na - task: lint_python status: na - task: lint_r status: na - task: lint_c_src status: na - task: lint_c_examples status: na - task: lint_c_benchmarks status: na - task: lint_c_tests_fixtures status: na - task: lint_shell status: na - task: lint_typescript_declarations status: na - task: lint_typescript_tests status: na - task: lint_license_headers status: passed ---
1 parent b49b2f8 commit 5f561b2

File tree

1 file changed

+79
-57
lines changed
  • lib/node_modules/@stdlib/lapack/base/dgttrf

1 file changed

+79
-57
lines changed

lib/node_modules/@stdlib/lapack/base/dgttrf/README.md

Lines changed: 79 additions & 57 deletions
Original file line numberDiff line numberDiff line change
@@ -40,31 +40,37 @@ where `L` is a product of permutation and unit lower bidiagonal matrices and `U`
4040

4141
For a tridiagonal matrix `A`, its elements are stored in three arrays:
4242

43-
<!-- <equation class="equation" label="eq:matrix_a" align="center" raw="A = \begin{bmatrix}
44-
d_1 & du_1 & 0 & \cdots & 0 \\
45-
dl_1 & d_2 & du_2 & \cdots & 0 \\
46-
0 & dl_2 & d_3 & \ddots & \vdots \\
47-
\vdots & \ddots & \ddots & \ddots & du_{n-1}\\
48-
0 & \cdots & 0 & dl_{n-1} & d_n
49-
\end{bmatrix}" alt="Representation of matrix A."> -->
43+
<!-- <equation class="equation" label="eq:matrix_a" align="center" raw="A = \left[
44+
\begin{array}{rrrrr}
45+
d_1 & du_1 & 0 & \cdots & 0 \\
46+
dl_1 & d_2 & du_2 & \ddots & \vdots \\
47+
0 & dl_2 & d_3 & \ddots & 0 \\
48+
\vdots & \ddots & \ddots & \ddots & du_{n-1} \\
49+
0 & \cdots & 0 & dl_{n-1} & d_n
50+
\end{array}
51+
\right]" alt="Representation of matrix A."> -->
5052

5153
```math
52-
A = \begin{bmatrix}
53-
d_1 & du_1 & 0 & \cdots & 0 \\
54-
dl_1 & d_2 & du_2 & \cdots & 0 \\
55-
0 & dl_2 & d_3 & \ddots & \vdots \\
56-
\vdots & \ddots & \ddots & \ddots & du_{n-1}\\
57-
0 & \cdots & 0 & dl_{n-1} & d_n
58-
\end{bmatrix}
54+
A = \left[
55+
\begin{array}{rrrrr}
56+
d_1 & du_1 & 0 & \cdots & 0 \\
57+
dl_1 & d_2 & du_2 & \ddots & \vdots \\
58+
0 & dl_2 & d_3 & \ddots & 0 \\
59+
\vdots & \ddots & \ddots & \ddots & du_{n-1} \\
60+
0 & \cdots & 0 & dl_{n-1} & d_n
61+
\end{array}
62+
\right]
5963
```
6064

61-
<!-- <div class="equation" align="center" data-raw-text="A = \begin{bmatrix}
62-
d_1 & du_1 & 0 & \cdots & 0 \\
63-
dl_1 & d_2 & du_2 & \cdots & 0 \\
64-
0 & dl_2 & d_3 & \ddots & \vdots \\
65-
\vdots & \ddots & \ddots & \ddots & du_{n-1}\\
66-
0 & \cdots & 0 & dl_{n-1} & d_n
67-
\end{bmatrix}" data-equation="eq:matrix_a"></div> -->
65+
<!-- <div class="equation" align="center" data-raw-text="A = \left[
66+
\begin{array}{rrrrr}
67+
d_1 & du_1 & 0 & \cdots & 0 \\
68+
dl_1 & d_2 & du_2 & \ddots & \vdots \\
69+
0 & dl_2 & d_3 & \ddots & 0 \\
70+
\vdots & \ddots & \ddots & \ddots & du_{n-1} \\
71+
0 & \cdots & 0 & dl_{n-1} & d_n
72+
\end{array}
73+
\right]" data-equation="eq:matrix_a"></div> -->
6874

6975
<!-- </equation> -->
7076

@@ -82,59 +88,75 @@ After factorization, the elements of `L` and `U` overwrite the input arrays, whe
8288

8389
The resulting `L` and `U` matrices have the following structure:
8490

85-
<!-- <equation class="equation" label="eq:matrix_l" align="center" raw="L = \begin{bmatrix}
86-
1 & 0 & 0 & \cdots & 0 \\
87-
l_1 & 1 & 0 & \cdots & 0 \\
91+
<!-- <equation class="equation" label="eq:matrix_l" align="center" raw="L = \left[
92+
\begin{array}{rrrrr}
93+
1 & 0 & \cdots & \cdots & 0 \\
94+
l_1 & 1 & \ddots & \ddots & \vdots \\
8895
0 & l_2 & 1 & \ddots & \vdots \\
89-
\vdots & \ddots & \ddots & \ddots & 0 \\
96+
\vdots & \ddots & \ddots & \ddots & 0 \\
9097
0 & \cdots & 0 & l_{n-1} & 1
91-
\end{bmatrix}" alt="Representation of matrix L as derived from DL."> -->
98+
\end{array}
99+
\right]" alt="Representation of matrix L as derived from DL."> -->
92100

93101
```math
94-
L = \begin{bmatrix}
95-
1 & 0 & 0 & \cdots & 0 \\
96-
l_1 & 1 & 0 & \cdots & 0 \\
102+
L = \left[
103+
\begin{array}{rrrrr}
104+
1 & 0 & \cdots & \cdots & 0 \\
105+
l_1 & 1 & \ddots & \ddots & \vdots \\
97106
0 & l_2 & 1 & \ddots & \vdots \\
98-
\vdots & \ddots & \ddots & \ddots & 0 \\
107+
\vdots & \ddots & \ddots & \ddots & 0 \\
99108
0 & \cdots & 0 & l_{n-1} & 1
100-
\end{bmatrix}
109+
\end{array}
110+
\right]
101111
```
102112

103-
<!-- <div class="equation" align="center" data-raw-text="L = \begin{bmatrix}
104-
1 & 0 & 0 & \cdots & 0 \\
105-
l_1 & 1 & 0 & \cdots & 0 \\
113+
<!-- <div class="equation" align="center" data-raw-text="L = \left[
114+
\begin{array}{rrrrr}
115+
1 & 0 & \cdots & \cdots & 0 \\
116+
l_1 & 1 & \ddots & \ddots & \vdots \\
106117
0 & l_2 & 1 & \ddots & \vdots \\
107-
\vdots & \ddots & \ddots & \ddots & 0 \\
118+
\vdots & \ddots & \ddots & \ddots & 0 \\
108119
0 & \cdots & 0 & l_{n-1} & 1
109-
\end{bmatrix}" data-equation="eq:matrix_l"></div> -->
120+
\end{array}
121+
\right]" data-equation="eq:matrix_l"></div> -->
110122

111123
<!-- </equation> -->
112124

113-
<!-- <equation class="equation" label="eq:matrix_u" align="center" raw="U = \begin{bmatrix}
114-
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 0 \\
115-
0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
116-
0 & 0 & u_{3,3} & \ddots & \ddots \\
117-
\vdots & \vdots & \ddots & \ddots & u_{n-1,n}\\
118-
0 & 0 & \cdots & 0 & u_{n,n}
119-
\end{bmatrix}" alt="Representation of matrix U as derived from D, DU, DU2."> -->
125+
<!-- <equation class="equation" label="eq:matrix_u" align="center" raw="U = \left[
126+
\begin{array}{rrrrrr}
127+
u_{1,1} & u_{1,2} & u_{1,3} & 0 & \cdots & 0 \\
128+
0 & u_{2,2} & u_{2,3} & u_{2,4} & \ddots & \vdots \\
129+
\vdots & \ddots & u_{3,3} & u_{3,4} & \ddots & 0 \\
130+
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-2,n} \\
131+
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-1,n} \\
132+
0 & \cdots & \cdots & \cdots & 0 & u_{n,n}
133+
\end{array}
134+
\right]" alt="Representation of matrix U as derived from D, DU, DU2."> -->
120135

121136
```math
122-
U = \begin{bmatrix}
123-
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 0 \\
124-
0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
125-
0 & 0 & u_{3,3} & \ddots & \ddots \\
126-
\vdots & \vdots & \ddots & \ddots & u_{n-1,n}\\
127-
0 & 0 & \cdots & 0 & u_{n,n}
128-
\end{bmatrix}
137+
U = \left[
138+
\begin{array}{rrrrrr}
139+
u_{1,1} & u_{1,2} & u_{1,3} & 0 & \cdots & 0 \\
140+
0 & u_{2,2} & u_{2,3} & u_{2,4} & \ddots & \vdots \\
141+
\vdots & \ddots & u_{3,3} & u_{3,4} & \ddots & 0 \\
142+
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-2,n} \\
143+
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-1,n} \\
144+
0 & \cdots & \cdots & \cdots & 0 & u_{n,n}
145+
\end{array}
146+
\right]
129147
```
130148

131-
<!-- <div class="equation" align="center" data-raw-text="U = \begin{bmatrix}
132-
u_{1,1} & u_{1,2} & u_{1,3} & \cdots & 0 \\
133-
0 & u_{2,2} & u_{2,3} & u_{2,4} & 0 \\
134-
0 & 0 & u_{3,3} & \ddots & \ddots \\
135-
\vdots & \vdots & \ddots & \ddots & u_{n-1,n}\\
136-
0 & 0 & \cdots & 0 & u_{n,n}
137-
\end{bmatrix}" data-equation="eq:matrix_u"></div> -->
149+
150+
<!-- <div class="equation" align="center" data-raw-text="U = \left[
151+
\begin{array}{rrrrrr}
152+
u_{1,1} & u_{1,2} & u_{1,3} & 0 & \cdots & 0 \\
153+
0 & u_{2,2} & u_{2,3} & u_{2,4} & \ddots & \vdots \\
154+
\vdots & \ddots & u_{3,3} & u_{3,4} & \ddots & 0 \\
155+
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-2,n} \\
156+
\vdots & \ddots & \ddots & \ddots & \ddots & u_{n-1,n} \\
157+
0 & \cdots & \cdots & \cdots & 0 & u_{n,n}
158+
\end{array}
159+
\right]" data-equation="eq:matrix_u"></div> -->
138160

139161
<!-- </equation> -->
140162

0 commit comments

Comments
 (0)