About stdlib...
We believe in a future in which the web is a preferred environment for numerical computation. To help realize this future, we've built stdlib. stdlib is a standard library, with an emphasis on numerical and scientific computation, written in JavaScript (and C) for execution in browsers and in Node.js.
The library is fully decomposable, being architected in such a way that you can swap out and mix and match APIs and functionality to cater to your exact preferences and use cases.
When you use stdlib, you can be absolutely certain that you are using the most thorough, rigorous, well-written, studied, documented, tested, measured, and high-quality code out there.
To join us in bringing numerical computing to the web, get started by checking us out on GitHub, and please consider financially supporting stdlib. We greatly appreciate your continued support!
Weibull distribution logarithm of probability density function (PDF).
The probability density function (PDF) for a Weibull random variable is
where lambda > 0 and k > 0 are the respective scale and shape parameters of the distribution.
npm install @stdlib/stats-base-dists-weibull-logpdfAlternatively,
- To load the package in a website via a scripttag without installation and bundlers, use the ES Module available on theesmbranch (see README).
- If you are using Deno, visit the denobranch (see README for usage intructions).
- For use in Observable, or in browser/node environments, use the Universal Module Definition (UMD) build available on the umdbranch (see README).
The branches.md file summarizes the available branches and displays a diagram illustrating their relationships.
To view installation and usage instructions specific to each branch build, be sure to explicitly navigate to the respective README files on each branch, as linked to above.
var logpdf = require( '@stdlib/stats-base-dists-weibull-logpdf' );Evaluates the logarithm of the probability density function (PDF) for a Weibull distribution with shape parameter k and scale parameter lambda.
var y = logpdf( 2.0, 1.0, 0.5 );
// returns ~-3.307
y = logpdf( -1.0, 4.0, 2.0 );
// returns -InfinityIf provided NaN as any argument, the function returns NaN.
var y = logpdf( NaN, 1.0, 1.0 );
// returns NaN
y = logpdf( 0.0, NaN, 1.0 );
// returns NaN
y = logpdf( 0.0, 1.0, NaN );
// returns NaNIf provided k <= 0, the function returns NaN.
var y = logpdf( 2.0, 0.0, 1.0 );
// returns NaN
y = logpdf( 2.0, -1.0, 1.0 );
// returns NaNIf provided lambda <= 0, the function returns NaN.
var y = logpdf( 2.0, 1.0, 0.0 );
// returns NaN
y = logpdf( 2.0, 1.0, -1.0 );
// returns NaNReturns a function for evaluating the logarithm of the PDF for a Weibull distribution with shape parameter k and scale parameter lambda.
var mylogpdf = logpdf.factory( 2.0, 10.0 );
var y = mylogpdf( 12.0 );
// returns ~-2.867
y = mylogpdf( 5.0 );
// returns ~-2.553- In virtually all cases, using the logpdforlogcdffunctions is preferable to manually computing the logarithm of thepdforcdf, respectively, since the latter is prone to overflow and underflow.
var randu = require( '@stdlib/random-base-randu' );
var logpdf = require( '@stdlib/stats-base-dists-weibull-logpdf' );
var lambda;
var k;
var x;
var y;
var i;
for ( i = 0; i < 10; i++ ) {
    x = randu() * 10.0;
    lambda = randu() * 10.0;
    k = randu() * 10.0;
    y = logpdf( x, k, lambda );
    console.log( 'x: %d, k: %d, λ: %d, ln(f(x;k,λ)): %d', x.toFixed( 4 ), k.toFixed( 4 ), lambda.toFixed( 4 ), y.toFixed( 4 ) );
}#include "stdlib/stats/base/dists/weibull/logpdf.h"Evaluates the logarithm of the probability density function (PDF) for a Weibull distribution with shape parameter k and scale parameter lambda.
double out = stdlib_base_dists_weibull_logpdf( 2.0, 1.0, 0.5 );
// returns ~3.307The function accepts the following arguments:
- x: [in] doubleinput value.
- k: [in] doubleshape parameter.
- lambda: [in] doublescale parameter.
double stdlib_base_dists_weibull_logpdf( const double x, const double k, const double lambda );#include "stdlib/stats/base/dists/weibull/logpdf.h"
#include <stdlib.h>
#include <stdio.h>
static double random_uniform( const double min, const double max ) {
    double v = (double)rand() / ( (double)RAND_MAX + 1.0 );
    return min + ( v*(max-min) );
}
int main( void ) {
    double lambda;
    double x;
    double k;
    double y;
    int i;
    for ( i = 0; i < 25; i++ ) {
        x = random_uniform( 0.0, 10.0 );
        lambda = random_uniform( 0.0, 10.0 );
        k = random_uniform( 0.0, 10.0 );
        y = stdlib_base_dists_weibull_logpdf( x, k, lambda );
        printf( "x: %lf, k: %lf, λ: %lf, ln(f(x;k,λ)): %lf\n", x, k, lambda, y );
    }
}This package is part of stdlib, a standard library for JavaScript and Node.js, with an emphasis on numerical and scientific computing. The library provides a collection of robust, high performance libraries for mathematics, statistics, streams, utilities, and more.
For more information on the project, filing bug reports and feature requests, and guidance on how to develop stdlib, see the main project repository.
See LICENSE.
Copyright © 2016-2025. The Stdlib Authors.