This repository contains the code for De-SaTE: Denoising Self-attention Transformer Encoders for Li-ion Battery Health Prognostics
@inproceedings{desate,
author={Shinde, Gaurav and Mohapatra, Rohan and Krishan, Pooja and Sengupta, Saptarshi},
booktitle={2023 IEEE International Conference on Big Data (BigData)},
title={De-SaTE: Denoising Self-attention Transformer Encoders for Li-ion Battery Health Prognostics},
year={2023},
volume={},
number={},
pages={2221-2228},
doi={10.1109/BigData59044.2023.10386134}}
G. Shinde, R. Mohapatra, P. Krishan and S. Sengupta, "De-SaTE: Denoising Self-attention Transformer Encoders for Li-ion Battery Health Prognostics," 2023 IEEE International Conference on Big Data (BigData), Sorrento, Italy, 2023, pp. 2221-2228.
-
Change the mask function to incorporate various types of noise
-
Gaussian noise: corrupted_x = x + self.noise_level * torch.randn_like(x)
-
Poisson noise: rate = torch.abs(x) / (self.noise_level + 1e-6)
poisson_noise = torch.poisson(rate) * (self.noise_level + 1e-6)
corrupted_x = x + poisson_noise
-
Speckle noise:
corrupted_x = x * (1 + self.noise_level * torch.randn_like(x))
-
Uniform noise:
corrupted_x = x + self.noise_level * (torch.rand_like(x) - 0.5)
Change the wavelet_denoise function according to soft , hard and garrote mode: Wavelet decomposition Threshold for denoising Reconstruct the denoised signal
-
-
Run the training loop for ## number of epochs