"Fine. I'll do it myself." β Thanos (and also me, after trying five different MCP servers that couldn't mix-and-match image models)
I wanted a single, simple MCP server that lets agents generate and edit images across OpenAI, Google (Gemini/Imagen), Azure, Vertex, and OpenRouterβwithout yakβshaving. Soβ¦ here it is.
A multiβprovider Model Context Protocol (MCP) server for image generation and editing with a unified, typeβsafe API. It returns MCP ImageContent blocks plus compact structured JSON so your client can route, log, or inspect results cleanly.
Important
This README.md is the canonical reference for API, capabilities, and usage. Some /docs files may lag behind.
- Why this exists
- Features
- Quick start (users)
- Quick start (developers)
- Configure
mcp.json - Tools API
- Providers & Models
- Python client example
- Environment Variables
- Running via FastMCP CLI
- Troubleshooting & FAQ
- Contributing & Releases
- License
Because I couldnβt find an MCP server that spoke multiple image providers with one sane schema. Some only generated, some only edited, some required summoning three different CLIs at midnight.
This one prioritizes:
- One schema across providers (AR & diffusion)
- Minimal setup (
uvxorpip, drop amcp.json, done) - Typeβsafe I/O with clear error shapes
- Discoverability: ask the server what models are live via
get_model_capabilities
- Unified tools:
generate_image,edit_image,get_model_capabilities - Providers: OpenAI, Azure OpenAI, Google Gemini, Vertex AI (Imagen & Gemini), OpenRouter
- Output: MCP
ImageContentblocks + small JSON metadata - Quality/size/orientation normalization
- Masking support where engines allow it
- Failβsoft errors with stable shape:
{ code, message, details? }
Install and use as a published package.
# With uv (recommended)
uv add image-gen-mcp
# Or with pip
pip install image-gen-mcpThen configure your MCP client.
Use uvx to run in an isolated env with correct deps:
{
"mcpServers": {
"image-gen-mcp": {
"command": "uvx",
"args": ["--from", "image-gen-mcp", "image-gen-mcp"],
"env": {
"OPENAI_API_KEY": "your-key-here"
}
}
}
}{
"tool": "generate_image",
"params": {
"prompt": "A vibrant painting of a fox in a sunflower field",
"provider": "openai",
"model": "gpt-image-1"
}
}Run from source for local development or contributions.
Prereqs
- Python 3.12+
uv(recommended)
Install deps
uv sync --all-extras --devEnvironment
cp .env.example .env
# Add your keysRun the server
# stdio (direct)
python -m image_gen_mcp.main
# via FastMCP CLI
fastmcp run image_gen_mcp/main.py:appIf you use a VS Code extension or local tooling that reads .vscode/mcp.json, here's a safe example to run the local server (do NOT commit secrets):
{
"servers": {
"image-gen-mcp": {
"command": "python",
"args": ["-m", "image_gen_mcp.main"],
"env": {
"# NOTE": "Replace with your local keys for testing; do not commit.",
"OPENROUTER_API_KEY": "__REPLACE_WITH_YOUR_KEY__"
}
}
},
"inputs": []
}Use this to run the server from your workspace instead of installing the package from PyPI. For CI or shared repos, store secrets in the environment or a secret manager and avoid checking them into git.
Dev tasks
uv run pytest -v
uv run ruff check .
uv run black --check .
uv run pyrightAll tools take named parameters. Outputs include structured JSON (for metadata/errors) and MCP ImageContent blocks (for actual images).
Create one or more images from a text prompt.
Example
{
"prompt": "A vibrant painting of a fox in a sunflower field",
"provider": "openai",
"model": "gpt-image-1",
"n": 2,
"size": "M",
"orientation": "landscape"
}Parameters
| Field | Type | Description |
|---|---|---|
prompt |
str | Required. Text description. |
provider |
enum | Required. openai | openrouter | azure | vertex | gemini. |
model |
enum | Required. Model id (see matrix). |
n |
int | Optional. Default 1; provider limits apply. |
size |
enum | Optional. S | M | L. |
orientation |
enum | Optional. square | portrait | landscape. |
quality |
enum | Optional. draft | standard | high. |
background |
enum | Optional. transparent | opaque (when supported). |
negative_prompt |
str | Optional. Used when provider supports it. |
directory |
str | Optional. Filesystem directory where the server should save generated images. If omitted a unique temp directory is used. |
Edit an image with a prompt and optional mask.
Example
{
"prompt": "Remove the background and make the subject wear a red scarf",
"provider": "openai",
"model": "gpt-image-1",
"images": ["data:image/png;base64,..."],
"mask": null
}Parameters
| Field | Type | Description |
|---|---|---|
prompt |
str | Required. Edit instruction. |
images |
list<str> | Required. One or more source images (base64, data URL, or https URL). Most models use only the first image. |
mask |
str | Optional. Mask as base64/data URL/https URL. |
provider |
enum | Required. See above. |
model |
enum | Required. Model id (see matrix). |
n |
int | Optional. Default 1; provider limits apply. |
size |
enum | Optional. S | M | L. |
orientation |
enum | Optional. square | portrait | landscape. |
quality |
enum | Optional. draft | standard | high. |
background |
enum | Optional. transparent | opaque. |
negative_prompt |
str | Optional. Negative prompt. |
directory |
str | Optional. Filesystem directory where the server should save edited images. If omitted a unique temp directory is used. |
Discover which providers/models are actually enabled based on your environment.
Example
{ "provider": "openai" }Call with no params to list all enabled providers/models.
Output: a CapabilitiesResponse with providers, models, and features.
Routing is handled by a ModelFactory that maps model β engine. A compact, curated list keeps things understandable.
| Model | Family | Providers | Generate | Edit | Mask |
|---|---|---|---|---|---|
gpt-image-1 |
AR | openai, azure |
β | β | β (OpenAI/Azure) |
dall-e-3 |
Diffusion | openai, azure |
β | β | β |
gemini-2.5-flash-image-preview |
AR | gemini, vertex |
β | β (maskless) | β |
imagen-4.0-generate-001 |
Diffusion | vertex |
β | β | β |
imagen-3.0-generate-002 |
Diffusion | vertex |
β | β | β |
imagen-4.0-fast-generate-001 |
Diffusion | vertex |
β | β | β |
imagen-4.0-ultra-generate-001 |
Diffusion | vertex |
β | β | β |
imagen-3.0-capability-001 |
Diffusion | vertex |
β | β | β (mask via mask config) |
google/gemini-2.5-flash-image-preview |
AR | openrouter |
β | β (maskless) | β |
| Provider | Supported Models |
|---|---|
openai |
gpt-image-1, dall-e-3 |
azure |
gpt-image-1, dall-e-3 |
gemini |
gemini-2.5-flash-image-preview |
vertex |
imagen-4.0-generate-001, imagen-3.0-generate-002, gemini-2.5-flash-image-preview |
openrouter |
google/gemini-2.5-flash-image-preview |
import asyncio
from fastmcp import Client
async def main():
# Assumes the server is running via: python -m image_gen_mcp.main
async with Client("image_gen_mcp/main.py") as client:
# 1) Capabilities
caps = await client.call_tool("get_model_capabilities")
print("Capabilities:", caps.structured_content or caps.text)
# 2) Generate
gen_result = await client.call_tool(
"generate_image",
{
"prompt": "a watercolor fox in a forest, soft light",
"provider": "openai",
"model": "gpt-image-1",
},
)
print("Generate Result:", gen_result.structured_content)
print("Image blocks:", len(gen_result.content))
asyncio.run(main())Set only what you need:
| Variable | Required for | Description |
|---|---|---|
OPENAI_API_KEY |
OpenAI | API key for OpenAI. |
AZURE_OPENAI_API_KEY |
Azure OpenAI | Azure OpenAI key. |
AZURE_OPENAI_ENDPOINT |
Azure OpenAI | Azure endpoint URL. |
AZURE_OPENAI_API_VERSION |
Azure OpenAI | Optional; default 2024-02-15-preview. |
GEMINI_API_KEY |
Gemini | Gemini Developer API key. |
OPENROUTER_API_KEY |
OpenRouter | OpenRouter API key. |
VERTEX_PROJECT |
Vertex AI | GCP project id. |
VERTEX_LOCATION |
Vertex AI | GCP region (e.g. us-central1). |
VERTEX_CREDENTIALS_PATH |
Vertex AI | Optional path to GCP JSON; ADC supported. |
Supports multiple transports:
- stdio:
fastmcp run image_gen_mcp/main.py:app - SSE (HTTP):
fastmcp run image_gen_mcp/main.py:app --transport sse --host 127.0.0.1 --port 8000 - HTTP:
fastmcp run image_gen_mcp/main.py:app --transport http --host 127.0.0.1 --port 8000 --path /mcp
Design notes
- Schema: public contract in
image_gen_mcp/schema.py(Pydantic). - Engines: modular adapters in
image_gen_mcp/engines/, selected byModelFactory. - Capabilities: discovered dynamically via
image_gen_mcp/settings.py. - Errors: stable JSON error
{ code, message, details? }.
I tested this project locally using the openrouter-backed model only. I could not access Gemini or OpenAI from my location (Hong Kong) due to regional restrictions β thanks, US government β so I couldn't fully exercise those providers.
Because of that limitation, the gemini/vertex and openai (including Azure) adapters may contain bugs or untested edge cases. If you use those providers and find issues, please open an issue or, even better, submit a pull request with a fix β contributions are welcome.
Suggested info to include when filing an issue:
- Your provider and model (e.g.,
openai:gpt-image-1,vertex:imagen-4.0-generate-001) - Full stderr/server logs showing the error
- Minimal reproduction steps or a short test script
Thanks β and PRs welcome!
PRs welcome! Please run tests and linters locally.
Release process (GitHub Actions)
-
Automated (recommended)
- Actions β Manual Release
- Pick version bump: patch / minor / major
- The workflow tags, builds the changelog, and publishes to PyPI
-
Manual
git tag vX.Y.Zgit push origin vX.Y.Z- Create a GitHub Release from the tag
Apache-2.0 β see LICENSE.