Skip to content

sihoonchoi/GI

Repository files navigation

Gaussian Integral (GI) Descriptors

Instruction

1. Run Gaussian Approximation

To perform Gaussian approximation of the original Lennard-Jones (LJ) potential curves, run:

python gauss_approx_lj.py

To perform Gaussian approximation of the soft LJ curves, run:

python gauss_approx_soft_lj.py

The optimized Gaussian parameters for each element will be saved in:

  • gauss_params/lj for the origianl LJ potential
  • gauss_params/soft_lj for the soft LJ potential

2. Generate GI Descriptor Vectors

To compute the GI descriptors, run the following command:

python gi.py --system --name OPAGIX --sigmas 0.1 0.2 0.3 --mcsh-orde 2 --mof-pool mean --mol-pool com

Required Arguments

  • --system: specifies the system type
    • mof: for metal-organic frameworks
    • mol: for molecules
  • --name: name of the compound
    • If --system is mof, it will read mof/{name}.cif
    • If --system is mol, it will read mol/{name}.xyz
  • --sigmas: space-separated list of sigma values used to generate the GI descriptors
  • --mcsh-order: Maximum MCSH order to include in the descriptor
  • --mof-pool: pooling strategy for MOFs
    • min: use the minimum value across the structure
    • mean: use the mean value across the structure
  • --mol-pool:
    • mean: use the mean value across all atoms
    • com: compute a single descriptor vector at the center-of-mass

The resulting GI descriptors will be saved in the descriptors/ directory with the filename {system}.csv.

Dependencies

  • NumPy
  • SciPy
  • Atomic Simulation Environment (ASE)
  • PyTorch
  • Skorch
  • AMPTorch

If you use the GI descriptor scheme in a scientific publication, please cite the following paper:

S. Choi, D. S. Sholl, and A. J. Medford, Gaussian Approximation of Dispersion Potentials for Efficient Featurization and Machine-Learning Predictions of Metal-Organic Frameworks, J. Chem. Phys. 2022, 156, 214108. DOI: https://doi.org/10.1063/5.0091405


Acknowledgements

  • This works was supported by the Department of Energy, Office of Science, Basic Energy Sciences, under Award #DE-SC0020306.
  • The codes in gi.py is adapted from AMPtorch/CEMT. For installation and instruction of the AMPtorch package, please refer to its official GitHub repo.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published