
A Python SDK for creating, hosting, and securing SignalWire AI agents as microservices with minimal boilerplate.
📖 Documentation #
🐛 Report an issue #
🐍 PyPI

🤖 Self-Contained Agents | Each agent is both a web app and an AI persona |
📝 Prompt Object Model | Structured prompt composition using POM |
⚙️ SWAIG Integration | Easily define and handle AI tools/functions |
🔧 Dynamic Configuration | Configure agents per-request for multi-tenant apps and personalization |
🗺️ Custom Routing | Dynamic request handling for different paths and content |
📞 SIP Integration | Route SIP calls to agents based on SIP usernames |
🔒 Security Built-In | Session management, function-specific security tokens, and basic auth |
💾 State Management | Persistent conversation state with automatic tracking |
🏗️ Prefab Archetypes | Ready-to-use agent types for common scenarios |
🏢 Multi-Agent Support | Host multiple agents on a single server |
� Modular Skills System | Add capabilities to agents with simple one-liner calls |
🔍 Local Search System | Offline document search with vector similarity and keyword search |
pip install signalwire-agents
The SDK includes optional local search capabilities that can be installed separately to avoid adding large dependencies to the base installation:
# Query existing .swsearch files only (smallest footprint)
pip install signalwire-agents[search-queryonly]
# Basic search (vector search + keyword search + building indexes)
pip install signalwire-agents[search]
# Full search with document processing (PDF, DOCX, etc.)
pip install signalwire-agents[search-full]
# Advanced NLP features (includes spaCy)
pip install signalwire-agents[search-nlp]
# All search features
pip install signalwire-agents[search-all]
Option | Size | Features |
---|---|---|
search-queryonly |
~400MB | Query existing .swsearch files only (no building/processing) |
search |
~500MB | Vector embeddings, keyword search, basic text processing |
search-full |
~600MB | + PDF, DOCX, Excel, PowerPoint, HTML, Markdown processing |
search-nlp |
~600MB | + Advanced spaCy NLP features |
search-all |
~700MB | All search features combined |
When to use search-queryonly
:
- Production containers with pre-built
.swsearch
files - Lambda/serverless deployments
- Agents that only need to query knowledge bases (not build them)
- Smaller deployment footprint requirements
- Local/Offline Search: No external API dependencies
- Hybrid Search: Vector similarity + keyword search
- Smart Document Processing: Markdown, Python, PDF, DOCX, etc.
- Multiple Languages: English, Spanish, with extensible framework
- CLI Tools: Build search indexes from document directories
- HTTP API: Standalone or embedded search service
# Only available with search extras installed
from signalwire_agents.search import IndexBuilder, SearchEngine
# Build search index
builder = IndexBuilder()
builder.build_index(
source_dir="./docs",
output_file="knowledge.swsearch",
file_types=['md', 'txt', 'pdf']
)
# Search documents
engine = SearchEngine("knowledge.swsearch")
results = engine.search(
query_vector=embeddings,
enhanced_text="search query",
count=5
)
The SignalWire Agents SDK includes a powerful modular skills system that allows you to add complex capabilities to your agents with simple one-liner calls:
from signalwire_agents import AgentBase
# Create an agent
agent = AgentBase("My Assistant", route="/assistant")
# Add skills with one-liners
agent.add_skill("web_search", {
"api_key": "your-google-api-key",
"search_engine_id": "your-search-engine-id"
}) # Web search capability
agent.add_skill("datetime") # Current date/time info
agent.add_skill("math") # Mathematical calculations
# Configure skills with parameters
agent.add_skill("web_search", {
"api_key": "your-google-api-key",
"search_engine_id": "your-search-engine-id",
"num_results": 1, # Get 1 search results
"no_results_message": "Sorry, I couldn't find anything about '{query}'. Try rephrasing your question."
})
# Advanced: Customize SWAIG function properties
agent.add_skill("math", {
"swaig_fields": {
"secure": False, # Override security settings
"fillers": {"en-US": ["Calculating..."]} # Custom filler phrases
}
})
# Multiple web search instances with different tool names
agent.add_skill("web_search", {
"api_key": "your-google-api-key",
"search_engine_id": "general-search-engine-id",
"tool_name": "search_general", # Creates search_general tool
"num_results": 1
})
agent.add_skill("web_search", {
"api_key": "your-google-api-key",
"search_engine_id": "news-search-engine-id",
"tool_name": "search_news", # Creates search_news tool
"num_results": 3,
"delay": 0.5
})
# Multiple DataSphere instances with different tool names
agent.add_skill("datasphere", {
"space_name": "my-space",
"project_id": "my-project",
"token": "my-token",
"document_id": "drinks-doc",
"tool_name": "search_drinks", # Creates search_drinks tool
"count": 2
})
agent.add_skill("datasphere", {
"space_name": "my-space",
"project_id": "my-project",
"token": "my-token",
"document_id": "food-doc",
"tool_name": "search_recipes", # Creates search_recipes tool
"tags": ["Food", "Recipes"]
})
agent.serve()
- web_search: Google Custom Search API integration with web scraping (supports multiple instances)
- datetime: Current date and time with timezone support
- math: Safe mathematical expression evaluation
- datasphere: SignalWire DataSphere knowledge search (supports multiple instances)
- native_vector_search: Offline document search with vector similarity and keyword search
- One-liner integration:
agent.add_skill("skill_name")
- Configurable parameters:
agent.add_skill("skill_name", {"param": "value"})
- Automatic discovery: Skills are automatically found from the skills directory
- Dependency validation: Clear error messages for missing requirements
- Modular architecture: Skills are self-contained and reusable
For detailed documentation, see Skills System README.
The SDK provides a DataMap system for creating SWAIG tools that integrate directly with REST APIs without requiring custom webhook endpoints. DataMap tools execute on the SignalWire server, making them simpler to deploy than traditional webhook-based tools.
from signalwire_agents import AgentBase
from signalwire_agents.core.data_map import DataMap
from signalwire_agents.core.function_result import SwaigFunctionResult
class APIAgent(AgentBase):
def __init__(self):
super().__init__(name="api-agent", route="/api")
# Create a simple weather API tool
weather_tool = (DataMap('get_weather')
.description('Get current weather information')
.parameter('location', 'string', 'City name', required=True)
.webhook('GET', 'https://api.weather.com/v1/current?key=YOUR_API_KEY&q=${location}')
.output(SwaigFunctionResult('Weather in ${location}: ${response.current.condition.text}, ${response.current.temp_f}°F'))
)
# Register the tool with the agent
self.register_swaig_function(weather_tool.to_swaig_function())
agent = APIAgent()
agent.serve()
# POST API with authentication
search_tool = (DataMap('search_knowledge')
.description('Search company knowledge base')
.parameter('query', 'string', 'Search query', required=True)
.webhook('POST', 'https://api.company.com/search',
headers={'Authorization': 'Bearer YOUR_TOKEN'})
.body({'query': '${query}', 'limit': 3})
.output(SwaigFunctionResult('Found: ${response.title} - ${response.summary}'))
)
# Expression-based tools (no API calls)
control_tool = (DataMap('file_control')
.description('Control file playback')
.parameter('command', 'string', 'Playback command')
.parameter('filename', 'string', 'File to control', required=False)
.expression(r'start.*', SwaigFunctionResult().add_action('start_playback', {'file': '${args.filename}'}))
.expression(r'stop.*', SwaigFunctionResult().add_action('stop_playback', True))
)
# Process API response arrays
docs_tool = (DataMap('get_latest_docs')
.description('Get latest documentation')
.webhook('GET', 'https://api.docs.com/latest')
.foreach('${response.documents}')
.output(SwaigFunctionResult('Document: ${foreach.title} (${foreach.updated_date})'))
)
For simpler use cases, use the convenience functions:
from signalwire_agents.core.data_map import create_simple_api_tool, create_expression_tool
# Simple API tool
weather = create_simple_api_tool(
name='get_weather',
url='https://api.weather.com/v1/current?key=API_KEY&q=${location}',
response_template='Weather in ${location}: ${response.current.condition.text}',
parameters={'location': {'type': 'string', 'description': 'City name', 'required': True}}
)
# Expression-based tool
file_control = create_expression_tool(
name='file_control',
patterns={
r'start.*': SwaigFunctionResult().add_action('start_playback', {'file': '${args.filename}'}),
r'stop.*': SwaigFunctionResult().add_action('stop_playback', True)
},
parameters={'command': {'type': 'string', 'description': 'Playback command'}}
)
# Register with agent
self.register_swaig_function(weather.to_swaig_function())
self.register_swaig_function(file_control.to_swaig_function())
DataMap tools support powerful variable expansion using ${variable}
syntax:
- Function arguments:
${args.parameter_name}
- API responses:
${response.field.nested_field}
- Array processing:
${foreach.item_field}
(when using foreach) - Global data:
${global_data.key}
- Metadata:
${meta_data.call_id}
- No webhook infrastructure: Tools run on SignalWire servers
- Simplified deployment: No need to expose endpoints
- Built-in authentication: Support for API keys, Bearer tokens, Basic auth
- Response processing: Built-in JSON path traversal and array iteration
- Error handling: Automatic error detection with
error_keys
- Pattern matching: Expression-based responses without API calls
For detailed documentation, see DataMap Guide.
The SignalWire Agents SDK provides a powerful enhancement to traditional prompts through the Contexts and Steps system. This feature allows you to add structured, workflow-driven AI interactions on top of your base prompt, with explicit navigation control and step-by-step guidance.
- Structured Workflows: Define clear, step-by-step processes for complex interactions
- Navigation Control: Explicitly control which steps or contexts users can access
- Completion Criteria: Set specific criteria for step completion and progression
- Function Restrictions: Limit which AI tools are available in each step
- Workflow Isolation: Create separate contexts for different conversation flows
- Enhanced Base Prompts: Adds structured workflows on top of your existing prompt foundation
from signalwire_agents import AgentBase
class WorkflowAgent(AgentBase):
def __init__(self):
super().__init__(name="Workflow Assistant", route="/workflow")
# Set base prompt (required even when using contexts)
self.prompt_add_section("Role", "You are a helpful workflow assistant.")
self.prompt_add_section("Instructions", "Guide users through structured processes step by step.")
# Define contexts and steps (adds structured workflow to base prompt)
contexts = self.define_contexts()
# Create a single context named "default" (required for single context)
context = contexts.add_context("default")
# Add step-by-step workflow
context.add_step("greeting") \
.set_text("Welcome! I'm here to help you complete your application. Let's start with your personal information.") \
.set_step_criteria("User has provided their name and confirmed they want to continue") \
.set_valid_steps(["personal_info"]) # Can only go to personal_info step
context.add_step("personal_info") \
.add_section("Instructions", "Collect the user's personal information") \
.add_bullets(["Ask for full name", "Ask for email address", "Ask for phone number"]) \
.set_step_criteria("All personal information has been collected and confirmed") \
.set_valid_steps(["review", "personal_info"]) # Can stay or move to review
context.add_step("review") \
.set_text("Let me review the information you've provided. Please confirm if everything is correct.") \
.set_step_criteria("User has confirmed or requested changes") \
.set_valid_steps(["personal_info", "complete"]) # Can go back or complete
context.add_step("complete") \
.set_text("Thank you! Your application has been submitted successfully.") \
.set_step_criteria("Application processing is complete")
# No valid_steps = end of workflow
agent = WorkflowAgent()
agent.serve()
class MultiContextAgent(AgentBase):
def __init__(self):
super().__init__(name="Multi-Context Agent", route="/multi-context")
# Set base prompt (required)
self.prompt_add_section("Role", "You are a versatile AI assistant.")
self.prompt_add_section("Capabilities", "You can help with calculations and provide time information.")
# Add skills
self.add_skill("datetime")
self.add_skill("math")
# Define contexts for different service modes
contexts = self.define_contexts()
# Main conversation context
main_context = contexts.add_context("main")
main_context.add_step("welcome") \
.set_text("Welcome! I can help with calculations or provide date/time info. What would you like to do?") \
.set_step_criteria("User has chosen a service type") \
.set_valid_contexts(["calculator", "datetime_info"]) # Can switch contexts
# Calculator context with function restrictions
calc_context = contexts.add_context("calculator")
calc_context.add_step("math_mode") \
.add_section("Role", "You are a mathematical assistant") \
.add_section("Instructions", "Help users with calculations") \
.set_functions(["math"]) # Only math function available \
.set_step_criteria("Calculation is complete") \
.set_valid_contexts(["main"]) # Can return to main
# DateTime context
datetime_context = contexts.add_context("datetime_info")
datetime_context.add_step("time_mode") \
.set_text("I can provide current date and time information. What would you like to know?") \
.set_functions(["datetime"]) # Only datetime function available \
.set_step_criteria("Date/time information has been provided") \
.set_valid_contexts(["main"]) # Can return to main
add_step(name)
: Create a new step in this contextset_valid_contexts(contexts)
: Control which contexts can be accessed from this context
set_text(text)
: Set direct text prompt for the stepadd_section(title, body)
: Add POM-style section (alternative to set_text)add_bullets(bullets)
: Add bullet points to the current or last sectionset_step_criteria(criteria)
: Define completion criteria for this stepset_functions(functions)
: Restrict available functions ("none" or array of function names)set_valid_steps(steps)
: Control navigation to other steps in same contextset_valid_contexts(contexts)
: Control navigation to other contexts
- Valid Steps: If omitted, only "next" step is implied. If specified, only those steps are allowed.
- Valid Contexts: If omitted, user is trapped in current context. If specified, can navigate to those contexts.
- Single Context: Must be named "default" for single-context workflows.
- Function Restrictions: Use
set_functions(["function_name"])
orset_functions("none")
to control AI tool access.
class SupportAgent(AgentBase):
def __init__(self):
super().__init__(name="Customer Support", route="/support")
# Set base prompt (required)
self.prompt_add_section("Role", "You are a professional customer support representative.")
self.prompt_add_section("Goal", "Provide excellent customer service using structured workflows.")
# Add skills for enhanced capabilities
self.add_skill("datetime")
self.add_skill("web_search", {"api_key": "your-key", "search_engine_id": "your-id"})
# Define support workflow contexts
contexts = self.define_contexts()
# Triage context
triage = contexts.add_context("triage")
triage.add_step("initial_greeting") \
.add_section("Current Task", "Understand the customer's issue and route them appropriately") \
.add_bullets("Questions to Ask", ["What problem are you experiencing?", "How urgent is this issue?", "Have you tried any troubleshooting steps?"]) \
.set_step_criteria("Issue type has been identified") \
.set_valid_contexts(["technical_support", "billing_support", "general_inquiry"])
# Technical support context
tech = contexts.add_context("technical_support")
tech.add_step("technical_diagnosis") \
.add_section("Current Task", "Help diagnose and resolve technical issues") \
.add_section("Available Tools", "Use web search to find solutions and datetime to check service windows") \
.set_functions(["web_search", "datetime"]) # Can search for solutions and check times \
.set_step_criteria("Technical issue is resolved or escalated") \
.set_valid_contexts(["triage"]) # Can return to triage
# Billing support context
billing = contexts.add_context("billing_support")
billing.add_step("billing_assistance") \
.set_text("I'll help you with your billing inquiry. Please provide your account details.") \
.set_functions("none") # No external tools for sensitive billing info \
.set_step_criteria("Billing issue is addressed") \
.set_valid_contexts(["triage"])
# General inquiry context
general = contexts.add_context("general_inquiry")
general.add_step("general_help") \
.set_text("I'm here to help with general questions. What can I assist you with?") \
.set_functions(["web_search", "datetime"]) # Full access to search and time \
.set_step_criteria("Inquiry has been answered") \
.set_valid_contexts(["triage"])
agent = SupportAgent()
agent.serve()
- Clear Structure: Explicit workflow definition makes agent behavior predictable
- Enhanced Control: Fine-grained control over function access and navigation
- Improved UX: Users understand where they are in the process and what's expected
- Debugging: Easy to trace and debug workflow issues
- Scalability: Complex multi-step processes are easier to maintain
For detailed documentation and advanced examples, see Contexts and Steps Guide.
from signalwire_agents import AgentBase
from signalwire_agents.core.function_result import SwaigFunctionResult
class SimpleAgent(AgentBase):
def __init__(self):
super().__init__(name="simple", route="/simple")
# Configure the agent's personality
self.prompt_add_section("Personality", body="You are a helpful assistant.")
self.prompt_add_section("Goal", body="Help users with basic questions.")
self.prompt_add_section("Instructions", bullets=["Be concise and clear."])
# Note: Use prompt_add_section() for all prompt configuration
@AgentBase.tool(
name="get_time",
description="Get the current time",
parameters={}
)
def get_time(self, args, raw_data):
from datetime import datetime
now = datetime.now().strftime("%H:%M:%S")
return SwaigFunctionResult(f"The current time is {now}")
# Run the agent
if __name__ == "__main__":
agent = SimpleAgent()
agent.serve(host="0.0.0.0", port=8000)
from signalwire_agents.prefabs import InfoGathererAgent
agent = InfoGathererAgent(
fields=[
{"name": "full_name", "prompt": "What is your full name?"},
{"name": "reason", "prompt": "How can I help you today?"}
],
confirmation_template="Thanks {full_name}, I'll help you with {reason}.",
name="info-gatherer",
route="/info-gatherer"
)
agent.serve(host="0.0.0.0", port=8000)
Available prefabs include:
InfoGathererAgent
: Collects structured information from usersFAQBotAgent
: Answers questions based on a knowledge baseConciergeAgent
: Routes users to specialized agentsSurveyAgent
: Conducts structured surveys with questions and rating scalesReceptionistAgent
: Greets callers and transfers them to appropriate departments
Configure agents dynamically based on request parameters for multi-tenant applications, A/B testing, and personalization.
- Static: Agent configured once at startup (traditional approach)
- Dynamic: Agent configured fresh for each request based on parameters
from signalwire_agents import AgentBase
class DynamicAgent(AgentBase):
def __init__(self):
super().__init__(name="dynamic-agent", route="/dynamic")
# Set up dynamic configuration callback
self.set_dynamic_config_callback(self.configure_per_request)
def configure_per_request(self, query_params, body_params, headers, agent):
"""Configure agent based on request parameters"""
# Extract parameters from request
tier = query_params.get('tier', 'standard')
language = query_params.get('language', 'en')
customer_id = query_params.get('customer_id')
# Configure voice and language
if language == 'es':
agent.add_language("Spanish", "es-ES", "rime.spore:mistv2")
else:
agent.add_language("English", "en-US", "rime.spore:mistv2")
# Configure based on service tier
if tier == 'premium':
agent.set_params({"end_of_speech_timeout": 300}) # Faster response
agent.prompt_add_section("Service Level", "You provide premium support.")
else:
agent.set_params({"end_of_speech_timeout": 500}) # Standard response
agent.prompt_add_section("Service Level", "You provide standard support.")
# Personalize with customer data
global_data = {"tier": tier, "language": language}
if customer_id:
global_data["customer_id"] = customer_id
agent.set_global_data(global_data)
# Usage examples:
# curl "http://localhost:3000/dynamic?tier=premium&language=es&customer_id=123"
# curl "http://localhost:3000/dynamic?tier=standard&language=en"
- Multi-tenant SaaS: Different configurations per customer/organization
- A/B Testing: Test different agent behaviors with different user groups
- Personalization: Customize voice, prompts, and behavior per user
- Localization: Language and cultural adaptation based on user location
- Dynamic Pricing: Adjust features and capabilities based on subscription tiers
When using dynamic configuration to add skills or tools based on request parameters, there's a challenge: SWAIG webhook callbacks are separate HTTP requests that won't have the original query parameters. The SDK provides add_swaig_query_params()
to solve this:
class DynamicAgent(AgentBase):
def __init__(self):
super().__init__(name="dynamic-agent", route="/agent")
self.set_dynamic_config_callback(self.configure_per_request)
def configure_per_request(self, query_params, body_params, headers, agent):
tier = query_params.get('tier', 'basic')
region = query_params.get('region', 'us-east')
if tier == 'premium':
# Add premium skills dynamically
agent.add_skill('advanced_search', {
'api_key': 'your-api-key',
'num_results': 5
})
# IMPORTANT: Preserve parameters for SWAIG callbacks
agent.add_swaig_query_params({
'tier': tier,
'region': region
})
# Now when SignalWire calls the SWAIG webhook, these params
# will be included, triggering the same dynamic configuration
# Initial request: GET /agent?tier=premium®ion=eu-west
# SWAIG callback: POST /swaig/?tier=premium®ion=eu-west
# Result: Premium skills are available in both requests!
Key Points:
- Problem: Dynamically added skills/tools won't exist during SWAIG callbacks without the original request parameters
- Solution: Use
add_swaig_query_params()
to include critical parameters in all SWAIG webhook URLs - Clear State: Use
clear_swaig_query_params()
if needed to reset parameters between requests - Token Safety: The SDK automatically renames security tokens from
token
to__token
to avoid parameter collisions
This ensures that any dynamic configuration based on request parameters is consistently applied across the initial SWML request and all subsequent SWAIG function callbacks.
For detailed documentation and advanced examples, see the Agent Guide.
The SDK supports the following environment variables:
SWML_BASIC_AUTH_USER
: Username for basic auth (default: auto-generated)SWML_BASIC_AUTH_PASSWORD
: Password for basic auth (default: auto-generated)SWML_PROXY_URL_BASE
: Base URL to use when behind a reverse proxy, used for constructing webhook URLsSWML_SSL_ENABLED
: Enable HTTPS/SSL support (values: "true", "1", "yes")SWML_SSL_CERT_PATH
: Path to SSL certificate fileSWML_SSL_KEY_PATH
: Path to SSL private key fileSWML_DOMAIN
: Domain name for SSL certificate and external URLsSWML_SCHEMA_PATH
: Optional path to override the location of the schema.json file
When the auth environment variables are set, they will be used for all agents instead of generating random credentials. The proxy URL base is useful when your service is behind a reverse proxy or when you need external services to access your webhooks.
To enable HTTPS directly (without a reverse proxy), set SWML_SSL_ENABLED
to "true", provide valid paths to your certificate and key files, and specify your domain name.
The SDK includes powerful CLI tools for development and testing:
swaig-test
: Comprehensive local testing and serverless environment simulationsw-search
: Build local search indexes from document directories and search within them
Test your agents locally without deployment:
# Install the SDK
pip install -e .
# Discover agents in a file
swaig-test examples/my_agent.py
# List available functions
swaig-test examples/my_agent.py --list-tools
# Test SWAIG functions with CLI syntax
swaig-test examples/my_agent.py --exec get_weather --location "New York"
# Multi-agent support
swaig-test examples/multi_agent.py --route /agent-path --list-tools
swaig-test examples/multi_agent.py --agent-class AgentName --exec function_name
# Generate and inspect SWML documents
swaig-test examples/my_agent.py --dump-swml
swaig-test examples/my_agent.py --dump-swml --raw | jq '.'
Test your agents in simulated serverless environments without deployment:
# Test in AWS Lambda environment
swaig-test examples/my_agent.py --simulate-serverless lambda --dump-swml
# Test Lambda function execution with proper response format
swaig-test examples/my_agent.py --simulate-serverless lambda \
--exec get_weather --location "Miami" --full-request
# Test with custom Lambda configuration
swaig-test examples/my_agent.py --simulate-serverless lambda \
--aws-function-name my-production-function \
--aws-region us-west-2 \
--exec my_function --param value
# Test CGI environment
swaig-test examples/my_agent.py --simulate-serverless cgi \
--cgi-host my-server.com --cgi-https --dump-swml
# Test Google Cloud Functions
swaig-test examples/my_agent.py --simulate-serverless cloud_function \
--gcp-function-url https://my-function.cloudfunctions.net \
--exec my_function
# Test Azure Functions
swaig-test examples/my_agent.py --simulate-serverless azure_function \
--azure-function-url https://my-function.azurewebsites.net \
--exec my_function
Use environment files for consistent testing across platforms:
# Create environment file
cat > production.env << EOF
AWS_LAMBDA_FUNCTION_NAME=prod-my-agent
AWS_REGION=us-east-1
API_KEY=prod_api_key_123
DEBUG=false
EOF
# Test with environment file
swaig-test examples/my_agent.py --simulate-serverless lambda \
--env-file production.env --exec my_function
# Override specific variables
swaig-test examples/my_agent.py --simulate-serverless lambda \
--env-file production.env --env DEBUG=true --dump-swml
Test the same agent across multiple serverless platforms:
# Test across all platforms
for platform in lambda cgi cloud_function azure_function; do
echo "Testing $platform..."
swaig-test examples/my_agent.py --simulate-serverless $platform \
--exec my_function --param value
done
# Compare webhook URLs across platforms
swaig-test examples/my_agent.py --simulate-serverless lambda --dump-swml | grep web_hook_url
swaig-test examples/my_agent.py --simulate-serverless cgi --cgi-host example.com --dump-swml | grep web_hook_url
- No Deployment Required: Test serverless behavior locally
- Environment Simulation: Complete platform-specific environment variable setup
- URL Generation: Verify webhook URLs are generated correctly for each platform
- Function Execution: Test with platform-specific request/response formats
- Environment Files: Reusable configurations for different stages
- Multi-Platform: Test Lambda, CGI, Cloud Functions, and Azure Functions
For detailed testing documentation, see the CLI Testing Guide.
The package includes comprehensive documentation in the docs/
directory:
- Agent Guide - Detailed guide to creating and customizing agents, including dynamic configuration
- Architecture - Overview of the SDK architecture and core concepts
- SWML Service Guide - Guide to the underlying SWML service
- Local Search System - Complete guide to the local search system with vector similarity and keyword search
- Skills System - Detailed documentation on the modular skills system
- CLI Tools - Command-line interface tools for development and testing
These documents provide in-depth explanations of the features, APIs, and usage patterns.
MIT