Skip to content

siddheshwar-9897/Medic_prediction

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

2 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Diabetes Prediction Web Application

A Django-based web application that predicts diabetes using machine learning. The application provides user authentication and a simple interface for users to input their health metrics and receive predictions.

Features

  • User Authentication (Register, Login, Logout)
  • Diabetes Prediction using Machine Learning
  • Responsive Web Interface
  • About and Contact Pages
  • Form-based Data Input

Tech Stack

  • Python 3.x
  • Django
  • Scikit-learn (Machine Learning Model)
  • SQLite Database
  • HTML/CSS
  • Bootstrap (for styling)

Project Structure

secondproject/
├── app2/                   # Main application directory
│   ├── migrations/        # Database migrations
│   ├── templates/        # HTML templates
│   ├── forms.py         # User registration forms
│   ├── models.py        # Database models
│   ├── urls.py          # URL configurations
│   ├── views.py         # View functions
│   └── training.py      # ML model training script
├── static/               # Static files (CSS, JS, Images)
├── templates/            # Global templates
├── manage.py            # Django management script
├── model.joblinb        # Trained ML model
└── db.sqlite3           # SQLite database

Installation

  1. Clone the repository:
git clone <repository-url>
  1. Create a virtual environment and activate it:
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate
  1. Install required packages:
pip install django scikit-learn joblib pandas numpy
  1. Run migrations:
python manage.py migrate
  1. Start the development server:
python manage.py runserver

Usage

  1. Register a new account or login with existing credentials
  2. Navigate to the prediction form
  3. Enter the required health metrics:
    • Glucose Level
    • Blood Pressure
    • Skin Thickness
    • Insulin
    • BMI (Body Mass Index)
    • Diabetes Pedigree Function
    • Age
  4. Submit the form to get the prediction result

Contributing

  1. Fork the repository
  2. Create your feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

This project is licensed under the MIT License - see the LICENSE file for details.

Contact

Your Name - your.email@example.com Project Link: https://github.com/yourusername/secondproject

About

Created Normal Templates

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published