Skip to content

shafiqahmeddev/AIDAS-Implementation

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

14 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

AIDAS Protocol Implementation

AI-Enhanced Intrusion Detection and Authentication for Autonomous Vehicles

Python Version License Build Status

πŸš— Overview

AIDAS is a comprehensive security protocol designed for autonomous vehicle ecosystems. It combines cutting-edge technologies including Physical Unclonable Functions (PUF), Chaotic Map Cryptography, and Deep Q-Network (DQN) based intrusion detection to provide robust authentication and security for autonomous vehicles, charging stations, and operators.

✨ Key Features

  • πŸ” Multi-layered Security: Hardware-level PUF, cryptographic protocols, and AI-based threat detection
  • πŸ€– AI-Enhanced Detection: Deep Q-Network for adaptive intrusion detection
  • πŸ”§ Modular Architecture: Clean, extensible codebase with proper separation of concerns
  • πŸ“Š Real-time Monitoring: Performance metrics, logging, and visualization
  • βš™οΈ Configuration Management: Flexible YAML-based configuration system
  • πŸ§ͺ Comprehensive Testing: Unit, integration, and performance test suites

πŸ› οΈ Installation

Prerequisites

  • Python 3.8 or higher
  • Virtual environment (recommended)

Quick Start

# Clone the repository
git clone <repository-url>
cd "AIDAS Implementation"

# Create and activate virtual environment
python -m venv venv
source venv/bin/activate  # On Windows: venv\Scripts\activate

# Install dependencies
pip install -r requirements.txt

# Configure the system
cp config/config.example.yaml config/config.yaml

# Run the enhanced demo
python demo.py

πŸš€ Usage

Enhanced Interactive Demo

The new modular demo provides comprehensive feature exploration:

python demo.py

Features include:

  1. 🎯 Complete system demonstration
  2. βš™οΈ Configuration management demo
  3. πŸ“ Enhanced logging showcase
  4. πŸ”§ Advanced PUF functionality
  5. πŸŒ€ Chaotic cryptography features
  6. πŸ€– AI intrusion detection
  7. πŸ” Protocol simulation
  8. πŸš€ Performance evaluation
  9. ⚑ Advanced cryptographic features
  10. πŸ”’ Security and error handling

Quick Test

Run a simple functionality test:

python -c "
from aidas import AIDASimulator
import secrets

# Create simulator and entities
simulator = AIDASimulator()
bio_data = secrets.token_bytes(32)
operator = simulator.create_operator('TEST_OP', 'password123', bio_data)
vehicle = simulator.create_vehicle('TEST_AV')
station = simulator.create_charging_station('TEST_CS')

# Run authentication
result = simulator.simulate_authentication_session(
    operator.entity_id, vehicle.entity_id, station.entity_id
)

print(f'Authentication: {\"βœ… SUCCESS\" if result[\"success\"] else \"❌ FAILED\"}')
print(f'Latency: {result[\"latency_ms\"]:.2f} ms')
"

πŸ“ Enhanced Project Structure

AIDAS-Implementation/
β”œβ”€β”€ aidas/                      # Main package
β”‚   β”œβ”€β”€ core/                   # Core components
β”‚   β”‚   β”œβ”€β”€ entities.py         # Protocol entities
β”‚   β”‚   β”œβ”€β”€ crypto.py           # Cryptographic engine
β”‚   β”‚   β”œβ”€β”€ puf.py              # Physical Unclonable Function
β”‚   β”‚   └── chaotic_map.py      # Chaotic map cryptography
β”‚   β”œβ”€β”€ ai/                     # AI components
β”‚   β”‚   └── dqn_detector.py     # DQN intrusion detection
β”‚   β”œβ”€β”€ protocol/               # Protocol logic
β”‚   β”‚   β”œβ”€β”€ authentication.py   # Authentication simulator
β”‚   β”‚   └── session.py          # Session management
β”‚   └── utils/                  # Utilities
β”‚       β”œβ”€β”€ logger.py           # Enhanced logging
β”‚       └── config.py           # Configuration management
β”œβ”€β”€ config/                     # Configuration files
β”œβ”€β”€ tests/                      # Test suites
β”œβ”€β”€ demo.py                     # Enhanced demo script
β”œβ”€β”€ aidas_protocol.py           # Legacy implementation
└── interactive_demo.py         # Legacy demo

πŸ”§ Core Components

1. PUF Simulator

puf = PUFSimulator("device_id")
challenge = b"random_challenge"
response = puf.generate_response(challenge)

2. Chaotic Map

chaotic_map = ChaoticMap(r=3.99, x0=0.1)
key = chaotic_map.generate_key(32)  # 32-byte key

3. DQN Intrusion Detector

detector = DQNIntrusionDetector()
result = detector.detect_intrusion(network_features)

4. Entity Creation

simulator = AIDASimulator()
operator = simulator.create_operator("OP001", "password", bio_data)
vehicle = simulator.create_vehicle("AV001")
station = simulator.create_charging_station("CS001")

πŸ“ˆ Performance Metrics

Based on the research implementation:

  • Detection Accuracy: 97.8%
  • False Positive Rate: 1.2%
  • Authentication Latency: 6.4ms (average)
  • Communication Overhead: 2176 bits
  • Computational Overhead Reduction: 31.25%

πŸ›£οΈ Roadmap

  • Core protocol implementation
  • Interactive demo
  • GUI interface (Issue #1)
  • Comprehensive test suite
  • REST API
  • Docker support
  • Production deployment

See CLAUDE.md for detailed implementation plan.

🀝 Contributing

We welcome contributions! Please follow these steps:

  1. Fork the repository
  2. Create a feature branch (git checkout -b feature/AmazingFeature)
  3. Commit your changes (git commit -m 'Add some AmazingFeature')
  4. Push to the branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

Please read CLAUDE.md for detailed development guidelines.

πŸ› Issues

Found a bug or have a feature request? Please check existing issues or create a new one.

Current open issues:

πŸ“š Documentation

πŸ”’ Security

This implementation includes multiple security layers:

  • Hardware-level security (PUF)
  • Cryptographic protection (AES-256, ECC-256)
  • AI-based threat detection
  • Protection against various attacks (MITM, DDoS, Replay, etc.)

πŸ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

πŸ‘₯ Authors

πŸ™ Acknowledgments

  • Based on the research paper "AIDAS: AI-Enhanced Intrusion Detection and Authentication for Autonomous Vehicles"
  • Thanks to all contributors and researchers in the field of autonomous vehicle security

πŸ“ž Contact

For questions or support, please open an issue or contact the maintainers.


Note: This is a research implementation. For production use, additional security auditing and testing is recommended.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •  

Languages