Skip to content

semantic-systems/kg-based-re

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 

Repository files navigation

Install the ULTRA model from the following repository: https://github.com/DeepGraphLearning/ULTRA. It is the prerequisite for all further experiments.

Zero-shot setting

DISCLAIMER: We were not able to upload all the auxiliary files in an anonymized way due to their size (especially the used graphs). We will upload them for the published paper.

Steps to reproduce

  1. Unpack the following files:

  2. Run the following command to train the model for each dataset:

    python3 src/train.py ...
    
  3. Evaluate on each seed of each dataset by using the following command:

    python3 src/evaluate.py ...
    

Functions

Arguments for train.py:

Argument Type Default Value Description
--dataset_name str "fewrel/unseen_5" Specifies the name of the dataset. This executes the training for all seeds as specified by the --seeds parameter.
--model_type str "bert-base-cased" Specifies the type of model to be used.
--batch_size int 24 Sets the batch size for training.
--num_workers int 2 Number of worker processes for data loading.
--accumulate_grad_batches int 2 Accumulates gradients over a specified number of batches.
--lr float 5e-5 Learning rate for optimization.
--seeds int, List [0, 1, 2, 3, 4] List of seeds of the dataset to train on.
--include_descriptions bool False Includes descriptions in the textual representation if this flag is present.
--deactivate_graph bool False Deactivate the graph component.
--only_graph bool False Only use the graph component.
--use_filtered_meta_graph bool False Use filtered graph.

Arguments for evaluate.py:

Argument Type Default Value Required Description
--model_checkpoint str - Yes Specifies the path to the model checkpoint.
--dataset_name str "fewrel/unseen_5_seed_0" No Specifies the name of the dataset with the corresponding seed.
--model_type str "bert-base-cased" No Specifies the type of model to be used.
--batch_size int 24 No Sets the batch size for training.
--num_workers int 2 No Number of worker processes for data loading.
--accumulate_grad_batches int 1 No Accumulates gradients over a specified number of batches.
--other_properties int 5 No Specifies the value for some other properties.
--include_descriptions bool False No Includes descriptions in the textual representation if this flag is present.
--deactivate_graph bool False No Deactivate the graph component.
--only_graph bool False No Only use the graph component.
--use_filtered_meta_graph bool False No Use filtered graph.

Supervised setting

DISCLAIMER: Again, we were not able to upload all the auxiliary files in an anonymized way due to their size (especially the used graphs). We will upload them for the published paper.

Steps to reproduce

  1. Unpack the following files:

  2. Run the following command to train the model for each dataset:

    python3 src/train.py ...
    
  3. Evaluate checkpoint for each dataset by using the following command:

    python3 src/evaluate.py ...
    

Functions

Arguments for train.py:

Here is a table similar to the one you provided, which describes the parameters for your method:

Argument Type Default Value Description
--model_checkpoint str None Specifies the path to a pre-trained model checkpoint.
--batch_size int 4 Sets the batch size for training and evaluation.
--num_rules int 1 Number of rules to be used in the model.
--num_hops int 4 Number of hops for the reasoning process.
--max_length int 1024 Maximum sequence length for input examples.
--num_epochs int 30 Number of training epochs.
--gradient_accumulation_steps int 1 Number of steps to accumulate gradients before updating.
--graph_only bool False Use only the graph component if this flag is present.
--use_hinge_abl bool False Uses hinge loss for abductive reasoning if this flag is present.
--use_at_loss bool False Activates the use of ATLoss if this flag is present.
--lr_encoder float 3e-5 Learning rate for the encoder component.
--lr_classifier float 1e-4 Learning rate for the classifier component.
--random_dropout float 0.2 Dropout rate applied randomly to the model layers during training.
--deactivate_graph bool False Deactivates the graph component if this flag is present.
--short_cut bool False Enables shortcut connectivity if this flag is present.
--use_biorel bool False Utilizes BioRel dataset if this flag is present.
--use_dwie bool False Utilizes DWIE dataset if this is specified.
--use_docred bool False Utilizes DocRED dataset if this flag is present.
--remove_direct_links bool False Removes direct links in the graph or data if this flag is present.
--graph_dim int 64 Dimensionality of graph embeddings.
--seed int 42 Seed for random number generation to ensure reproducibility.
--post_prediction bool False Activates post-prediction processing if this flag is present.
Arguments for evaluate.py:
Argument Type Default Value Description
model_checkpoint str None Specifies the path to a pre-trained model checkpoint. This is a required positional argument.
--batch_size int 4 Sets the batch size for training and evaluation.
--num_rules int 1 Number of rules to be used in the model.
--num_hops int 4 Number of hops for the reasoning process.
--max_length int 1024 Maximum sequence length for input examples.
--gradient_accumulation_steps int 1 Number of steps to accumulate gradients before updating.
--graph_only bool False Use only the graph component if this flag is present.
--deactivate_graph bool False Deactivates the graph component if this flag is present.
--short_cut bool False Enables shortcut connectivity if this flag is present.
--use_biorel bool False Utilizes BioRel dataset if this flag is present.
--use_dwie bool False Utilizes DWIE dataset if specified.
--remove_direct_links bool False Removes direct links in the graph or data if this flag is present.
--separated bool False Processes inputs as separated components if this flag is present.
--graph_dim int 64 Dimensionality of graph embeddings.
--post_prediction bool False Activates post-prediction processing if this flag is present.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages