A comprehensive machine learning platform built with Streamlit that allows users to upload data, train multiple ML models, evaluate performance, make predictions, and visualize results. Perfect for data scientists, researchers, and anyone interested in machine learning.
- Upload CSV files or use built-in sample datasets
- Data exploration with statistical summaries
- Missing value detection and handling
- Automatic data preprocessing (scaling, encoding)
- Classification: Random Forest, Logistic Regression
- Regression: Random Forest, Linear Regression
- Clustering: K-Means
- Hyperparameter tuning for model optimization
- Performance metrics (Accuracy, Precision, Recall, F1-Score for classification)
- Regression metrics (MSE, RMSE, Rยฒ Score)
- Feature importance analysis
- Model comparison capabilities
- Interactive prediction interface
- Real-time predictions on new data
- Input validation and preprocessing
- Correlation matrices
- Distribution plots
- Scatter plots
- Box plots
- PCA visualization
- Save trained models for later use
- Load pre-trained models
- Model metadata storage
- Python 3.8+
- pip package manager
-
Clone the repository:
git clone <your-repo-url> cd new_app_project
-
Install dependencies:
pip install -r requirements.txt
-
Run the application:
streamlit run src/main.py
-
Open your browser and go to
http://localhost:8501
new_app_project/
โโโ src/
โ โโโ main.py # Main Streamlit application
โ โโโ models/ # ML model implementations
โ โโโ data/ # Data processing utilities
โ โโโ utils/ # Helper functions
โ โโโ api/ # API endpoints (future)
โโโ tests/ # Unit tests
โโโ docs/ # Documentation
โโโ assets/ # Static assets
โ โโโ images/ # Images and icons
โ โโโ data/ # Sample datasets
โโโ notebooks/ # Jupyter notebooks
โโโ models/ # Saved models (created at runtime)
โโโ requirements.txt # Python dependencies
โโโ README.md # This file
โโโ .gitignore # Git ignore rules
- scikit-learn - Machine learning algorithms
- pandas - Data manipulation and analysis
- numpy - Numerical computing
- matplotlib - Basic plotting
- seaborn - Statistical data visualization
- plotly - Interactive visualizations
- Streamlit - Web application framework
- Flask - API framework (future)
- FastAPI - Modern API framework (future)
- TensorFlow - Deep learning framework
- PyTorch - Deep learning framework
- Transformers - Hugging Face transformers
- joblib - Model persistence
- python-dotenv - Environment variables
- pydantic - Data validation
- Upload your CSV file or choose from sample datasets
- Explore data statistics and distributions
- Check for missing values and data quality
- Select task type (Classification/Regression/Clustering)
- Choose your target variable
- Select ML algorithm
- Tune hyperparameters
- Train the model
- View performance metrics
- Analyze feature importance
- Compare different models
- Input new data points
- Get real-time predictions
- View prediction confidence
- Create correlation matrices
- Plot distributions and relationships
- Perform PCA analysis
- Save trained models for later use
- Load pre-trained models
- Share models with others
- Iris Dataset - Flower classification (3 classes)
- Breast Cancer - Medical diagnosis (2 classes)
- Diabetes Dataset - Medical prediction
- Random Data - Generated clustering data
streamlit run src/main.py
- Push code to GitHub
- Connect to Streamlit Cloud
- Deploy automatically
docker build -t ml-platform .
docker run -p 8501:8501 ml-platform
Create a .env
file:
DEBUG=True
MODEL_CACHE_DIR=models/
DATA_CACHE_DIR=data/
Create .streamlit/config.toml
:
[server]
port = 8501
address = "0.0.0.0"
[browser]
gatherUsageStats = false
pytest tests/
pytest --cov=src tests/
- Small datasets (< 1K rows): < 30 seconds
- Medium datasets (1K-10K rows): 1-5 minutes
- Large datasets (> 10K rows): 5+ minutes
- Real-time predictions for single inputs
- Batch predictions for multiple inputs
- Deep Learning Models (Neural Networks, CNN, RNN)
- AutoML capabilities
- Model Explainability (SHAP, LIME)
- Time Series Analysis
- Natural Language Processing
- Computer Vision models
- API Endpoints for external access
- User Authentication and model sharing
- Real-time Data Streaming
- Model Versioning and A/B testing
- Cross-validation techniques
- Hyperparameter optimization (Grid Search, Random Search, Bayesian)
- Ensemble methods (Voting, Stacking, Bagging)
- Feature selection algorithms
- Anomaly detection
- Fork the repository
- Create a feature branch
- Make your changes
- Add tests
- Submit a pull request
This project is licensed under the MIT License - see the LICENSE file for details.
- Documentation: Check the docs/ folder
- Issues: Create an issue on GitHub
- Discussions: Use GitHub Discussions
- Streamlit team for the amazing framework
- scikit-learn contributors for ML algorithms
- Plotly for interactive visualizations
- Open source community for inspiration
๐ Start building amazing ML models today!