Skip to content

san-git/ai-ml-platform

Folders and files

NameName
Last commit message
Last commit date

Latest commit

ย 

History

20 Commits
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 
ย 

Repository files navigation

๐Ÿค– AI/ML Platform - Multi-Model Machine Learning Application

๐Ÿ“ Description

A comprehensive machine learning platform built with Streamlit that allows users to upload data, train multiple ML models, evaluate performance, make predictions, and visualize results. Perfect for data scientists, researchers, and anyone interested in machine learning.

๐Ÿš€ Features

๐Ÿ“Š Data Management

  • Upload CSV files or use built-in sample datasets
  • Data exploration with statistical summaries
  • Missing value detection and handling
  • Automatic data preprocessing (scaling, encoding)

๐Ÿค– Machine Learning Models

  • Classification: Random Forest, Logistic Regression
  • Regression: Random Forest, Linear Regression
  • Clustering: K-Means
  • Hyperparameter tuning for model optimization

๐Ÿ“ˆ Model Evaluation

  • Performance metrics (Accuracy, Precision, Recall, F1-Score for classification)
  • Regression metrics (MSE, RMSE, Rยฒ Score)
  • Feature importance analysis
  • Model comparison capabilities

๐Ÿ”ฎ Predictions

  • Interactive prediction interface
  • Real-time predictions on new data
  • Input validation and preprocessing

๐Ÿ“Š Data Visualization

  • Correlation matrices
  • Distribution plots
  • Scatter plots
  • Box plots
  • PCA visualization

๐Ÿ’พ Model Management

  • Save trained models for later use
  • Load pre-trained models
  • Model metadata storage

๐Ÿš€ Getting Started

Prerequisites

  • Python 3.8+
  • pip package manager

Installation

  1. Clone the repository:

    git clone <your-repo-url>
    cd new_app_project
  2. Install dependencies:

    pip install -r requirements.txt
  3. Run the application:

    streamlit run src/main.py
  4. Open your browser and go to http://localhost:8501

๐Ÿ“ Project Structure

new_app_project/
โ”œโ”€โ”€ src/
โ”‚   โ”œโ”€โ”€ main.py              # Main Streamlit application
โ”‚   โ”œโ”€โ”€ models/              # ML model implementations
โ”‚   โ”œโ”€โ”€ data/                # Data processing utilities
โ”‚   โ”œโ”€โ”€ utils/               # Helper functions
โ”‚   โ””โ”€โ”€ api/                 # API endpoints (future)
โ”œโ”€โ”€ tests/                   # Unit tests
โ”œโ”€โ”€ docs/                    # Documentation
โ”œโ”€โ”€ assets/                  # Static assets
โ”‚   โ”œโ”€โ”€ images/              # Images and icons
โ”‚   โ””โ”€โ”€ data/                # Sample datasets
โ”œโ”€โ”€ notebooks/               # Jupyter notebooks
โ”œโ”€โ”€ models/                  # Saved models (created at runtime)
โ”œโ”€โ”€ requirements.txt         # Python dependencies
โ”œโ”€โ”€ README.md               # This file
โ””โ”€โ”€ .gitignore              # Git ignore rules

๐Ÿ› ๏ธ Technologies Used

Core ML Libraries

  • scikit-learn - Machine learning algorithms
  • pandas - Data manipulation and analysis
  • numpy - Numerical computing
  • matplotlib - Basic plotting
  • seaborn - Statistical data visualization
  • plotly - Interactive visualizations

Web Framework

  • Streamlit - Web application framework
  • Flask - API framework (future)
  • FastAPI - Modern API framework (future)

Deep Learning (Optional)

  • TensorFlow - Deep learning framework
  • PyTorch - Deep learning framework
  • Transformers - Hugging Face transformers

Utilities

  • joblib - Model persistence
  • python-dotenv - Environment variables
  • pydantic - Data validation

๐Ÿ“ฑ How to Use

1. Data Upload & Exploration

  • Upload your CSV file or choose from sample datasets
  • Explore data statistics and distributions
  • Check for missing values and data quality

2. Model Training

  • Select task type (Classification/Regression/Clustering)
  • Choose your target variable
  • Select ML algorithm
  • Tune hyperparameters
  • Train the model

3. Model Evaluation

  • View performance metrics
  • Analyze feature importance
  • Compare different models

4. Make Predictions

  • Input new data points
  • Get real-time predictions
  • View prediction confidence

5. Data Visualization

  • Create correlation matrices
  • Plot distributions and relationships
  • Perform PCA analysis

6. Save/Load Models

  • Save trained models for later use
  • Load pre-trained models
  • Share models with others

๐ŸŽฏ Sample Datasets Included

Classification

  • Iris Dataset - Flower classification (3 classes)
  • Breast Cancer - Medical diagnosis (2 classes)

Regression

  • Diabetes Dataset - Medical prediction

Clustering

  • Random Data - Generated clustering data

๐Ÿš€ Deployment

Local Development

streamlit run src/main.py

Streamlit Cloud

  1. Push code to GitHub
  2. Connect to Streamlit Cloud
  3. Deploy automatically

Docker (Future)

docker build -t ml-platform .
docker run -p 8501:8501 ml-platform

๐Ÿ”ง Configuration

Environment Variables

Create a .env file:

DEBUG=True
MODEL_CACHE_DIR=models/
DATA_CACHE_DIR=data/

Streamlit Configuration

Create .streamlit/config.toml:

[server]
port = 8501
address = "0.0.0.0"

[browser]
gatherUsageStats = false

๐Ÿงช Testing

Run Tests

pytest tests/

Run with Coverage

pytest --cov=src tests/

๐Ÿ“Š Performance

Model Training

  • Small datasets (< 1K rows): < 30 seconds
  • Medium datasets (1K-10K rows): 1-5 minutes
  • Large datasets (> 10K rows): 5+ minutes

Predictions

  • Real-time predictions for single inputs
  • Batch predictions for multiple inputs

๐Ÿ”ฎ Future Enhancements

Planned Features

  • Deep Learning Models (Neural Networks, CNN, RNN)
  • AutoML capabilities
  • Model Explainability (SHAP, LIME)
  • Time Series Analysis
  • Natural Language Processing
  • Computer Vision models
  • API Endpoints for external access
  • User Authentication and model sharing
  • Real-time Data Streaming
  • Model Versioning and A/B testing

Advanced Analytics

  • Cross-validation techniques
  • Hyperparameter optimization (Grid Search, Random Search, Bayesian)
  • Ensemble methods (Voting, Stacking, Bagging)
  • Feature selection algorithms
  • Anomaly detection

๐Ÿค Contributing

  1. Fork the repository
  2. Create a feature branch
  3. Make your changes
  4. Add tests
  5. Submit a pull request

๐Ÿ“„ License

This project is licensed under the MIT License - see the LICENSE file for details.

๐Ÿ†˜ Support

  • Documentation: Check the docs/ folder
  • Issues: Create an issue on GitHub
  • Discussions: Use GitHub Discussions

๐ŸŽ‰ Acknowledgments

  • Streamlit team for the amazing framework
  • scikit-learn contributors for ML algorithms
  • Plotly for interactive visualizations
  • Open source community for inspiration

๐Ÿš€ Start building amazing ML models today!

About

ai-ml-platform

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages