Stochastic Growth with Discrete Choice
Production:
TFP envolution:
Period utility:
Maximization objective:
Budget constraint:
First-order condition:
$$ c_t^{-\gamma} = \beta\mathbb{E}t\Bigg{ c{t+1}^{-\gamma} \Big[\alpha A_{t+1}(\frac{L_{t+1}}{K_{t+1}})^{1-\alpha} + 1 - \delta\Big] \Bigg},\ c_t^{-\gamma} (1-\alpha) A_t (\frac{K_t}{L_t})^{\alpha}= B(\bar{L}-L_t)^{-\eta}, \text{if L is continuous.} $$
Steady state: