Skip to content

I-HOPE — Interpretable Hierarchical mOdel for Personalized mEntal Health Prediction

License

Notifications You must be signed in to change notification settings

roycmeghna/I-HOPE

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

68 Commits
 
 
 
 
 
 
 
 

Repository files navigation

I-HOPE — Interpretable Hierarchical mOdel for Personalized mEntal Health Prediction

This repository contains code for I-HOPEInterpretable Hierarchical mOdel for Personalized mEntal Health Prediction. I-HOPE is a mental health prediction system that employs a two-stage hierarchical model to map raw behavioral features to mental health status (PHQ-4 categories). It does so by leveraging five defined behavioral categories, referred to as interaction labels. This work utilizes the CES dataset(https://www.kaggle.com/datasets/subigyanepal/college-experience-dataset).

Overview

The project follows a two-stage hierarchical model as shown below:

image
  1. Stage 1: Feature Mapping to Interaction Labels
    35 chosen raw behavioral features are transformed into five interaction labels:
    • Leisure
    • Me Time
    • Phone Time
    • Sleep
    • Social Time
      This is achieved by data cleaning, feature engineering, clustering (using KMeans), and personalized feature importance analysis (using Random Forests).

Selected Features and Relevant Labels

# Feature Name Relevant Labels[0: Leisure, 1: MeTime, 2: Phone, 3: Sleep , 4: SocialInt]
1 act_on_bike_ep_0 [0,1]
2 act_on_foot_ep_0 [0,1,4]
3 act_running_ep_0 [0,1]
4 act_still_ep_0 [1,3]
5 act_walking_ep_0 [0,1,4]
6 audio_convo_duration_ep_0 [0,2,4]
7 (call_in_num + call_out_num) / (call_in_duration + call_out_duration) [0,2]
8 loc_food_audio_voice [4]
9 loc_home_audio_voice [1,2,3]
10 loc_social_audio_voice [0,2,4]
11 loc_other_dorm_audio_voice [0,4]
12 loc_self_dorm_audio_voice [1,2]
13 loc_study_audio_voice [1,4]
14 loc_food_convo_duration [4]
15 loc_home_convo_duration [1,2,3]
16 loc_other_dorm_convo_duration [0,4]
17 loc_social_convo_duration [0,4]
18 loc_study_convo_duration [1,4]
19 loc_self_dorm_convo_duration [1,2]
20 loc_home_dur [1,3]
21 loc_leisure_dur [0,4]
22 loc_other_dorm_dur [4]
23 loc_self_dorm_dur [1,3]
24 loc_social_dur [4]
25 loc_study_dur [1,4]
26 loc_workout_dur [0,1]
27 loc_home_unlock_num / loc_home_unlock_duration [0,1,2]
28 loc_other_dorm_unlock_num / loc_other_dorm_unlock_duration [0,4,2]
29 loc_self_dorm_unlock_num / loc_self_dorm_unlock_duration [1,2]
30 loc_social_unlock_num / loc_social_unlock_duration [2,4]
31 loc_study_unlock_num / loc_study_unlock_duration [1,2,3]
32 sleep_duration [3]
33 sleep_end - sleep_start [3]
34 unlock_num_ep_0 / unlock_duration_ep_0 [2]
35 sleep_heathkit_dur [3]
  1. Stage 2: Prediction Using Interaction Labels
    The computed interaction label scores are then used as inputs to build personalized neural network models to predict the PHQ-4 mental health categories.

Files

  1. Github_code.ipynb -- Notebook with the code
  2. Csvs used -

About

I-HOPE — Interpretable Hierarchical mOdel for Personalized mEntal Health Prediction

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Contributors 2

  •  
  •