Skip to content

rongjx3/IMUdeblur_comp

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 

Repository files navigation

Supplementary Material of IMU-Assisted Robust Blur Kernel Re-Estimation in Non-Uniform Image Deblurring

This supplementary material contains additional comparative experimental results.

Visual Comparison Results on Public Dataset

We compare the proposed method with BDSI1, DSPSI2, ASPDC3, M3SNet4, NAFNet5, EFDT6, SelfDeblur7, VDIP8, CIMBID9 and GAMD10 on the public dataset from CIMBID9.

Example #01
Example #02
Example #03
Example #04

Quantitative Comparison Results on Public Dataset

For a quantitative comparison of different methods using these real-world images, we use a deblurring metric introduced by 11. This metric allows us to assess deblurring results quantitatively, where higher values signify better deblurring quality.

Quantitative comparison with BDSI, DSPSI, ASPDC, M3SNet, NAFNet, EFDT, SelfDeblur, VDIP, CIMBID and GAMD on the public dataset is shown in the table below.

Example Blur Ours BDSI DSPSI ASPDC M3SNet NAFNet EFDT SelfDeblur VDIP CIMBID GAMD
#01 -11.2445 -6.6010 -7.7394 -9.5686 -9.6105 -10.2199 -9.3732 -9.5096 -12.3482 -8.9269 -7.3765 -9.5880
#02 -12.7530 -7.4661 -9.4947 -10.8203 -10.5854 -11.3890 -11.7498 -11.5662 -11.1049 -10.3702 -9.2331 -10.7731
#03 -13.8704 -7.8338 -9.4071 -11.6113 -12.1604 -11.8839 -11.9703 -11.9748 -11.6265 -10.8526 -8.2509 -11.1112
#04 -12.5138 -8.3505 -8.9111 -10.9472 -12.6569 -13.1406 -11.8283 -10.9859 -11.8240 -11.7918 -6.8767 -10.0561
Average -12.5954 -7.5629 -8.8881 -10.7369 -11.2533 -11.6584 -11.2304 -11.0091 -11.7259 -10.4854 -7.9343 -10.3821

Visual Comparison Results on Proposed Dataset

We compare the proposed method with BDSI1, DSPSI2, ASPDC3, M3SNet4, NAFNet5, EFDT6, SelfDeblur7, VDIP8, CIMBID9 and GAMD10 on the proposed dataset.

Example #01
Example #04
Example #18
Example #24

Quantitative Comparison Results on Proposed Dataset

Quantitative comparison with BDSI, DSPSI, ASPDC, M3SNet, NAFNet, EFDT, SelfDeblur, VDIP, CIMBID and GAMD on the full proposed dataset is shown in the table below.

Example Blur Ours BDSI DSPSI ASPDC M3SNet NAFNet EFDT SelfDeblur VDIP CIMBID GAMD
#01 -14.2299 -8.4303 -10.1202 -12.7717 -12.7610 -11.4985 -14.3875 -11.4029 -14.0889 -13.7468 -11.5402 -9.5651
#02 -9.5827 -7.2969 -7.7550 -11.1013 -9.3064 -8.6934 -10.2131 -8.6472 -9.7206 -9.7240 -11.5618 -7.9661
#03 -10.3344 -7.0323 -13.0681 -13.9908 -9.8253 -9.9756 -10.5314 -9.7753 -10.6578 -10.5409 -12.3192 -8.7487
#04 -9.8327 -6.1239 -8.9568 -12.9896 -9.1821 -9.0354 -10.8401 -8.5073 -10.0383 -9.7866 -9.3871 -7.2160
#05 -8.8548 -7.2641 -7.5804 -13.3703 -8.8874 -8.1637 -9.4952 -7.8183 -8.7094 -8.2746 -10.3126 -6.3930
#06 -9.3332 -7.3985 -7.8739 -11.8843 -8.6003 -9.1244 -9.6251 -8.9136 -9.0634 -8.9603 -9.1245 -7.6856
#07 -10.8297 -8.7588 -9.1372 -11.1475 -10.2976 -10.3487 -10.8866 -10.5002 -11.1224 -10.7797 -11.4211 -9.9066
#08 -10.7252 -7.7959 -8.1523 -10.6616 -10.1765 -10.8158 -10.5758 -11.0737 -11.4531 -10.7046 -9.7506 -8.9586
#09 -8.7098 -7.6488 -7.9736 -9.9873 -8.4407 -8.9775 -8.9690 -9.2261 -8.8128 -8.7977 -8.7069 -7.9521
#10 -10.1788 -6.6942 -9.4736 -11.9584 -9.0191 -9.5080 -10.6799 -8.6291 -10.2060 -10.1041 -10.9666 -7.2690
#11 -8.8784 -5.7760 -10.8301 -14.3212 -8.5333 -8.7637 -9.6886 -8.2267 -8.9774 -8.8247 -9.4377 -7.2537
#12 -10.5998 -7.2472 -12.2370 -15.6571 -9.6602 -9.7213 -11.1770 -9.2494 -9.8322 -8.8489 -12.7794 -8.7189
#13 -10.0377 -5.9846 -8.8257 -11.1666 -7.9502 -8.9996 -10.1970 -9.3490 -9.4370 -9.0338 -10.2588 -6.3445
#14 -13.5860 -11.4174 -15.3101 -15.1848 -11.5736 -11.8136 -13.4017 -13.1168 -14.4153 -13.7340 -12.1475 -11.0398
#15 -10.6250 -6.3864 -8.5152 -14.4129 -8.8497 -9.1823 -11.1711 -8.2824 -10.0242 -10.0310 -11.7873 -7.2836
#16 -12.7760 -7.6617 -12.0659 -15.7520 -11.1811 -9.7448 -12.8441 -10.1712 -12.7225 -11.2023 -13.2840 -9.5225
#17 -9.1349 -7.8922 -7.5550 -14.8067 -8.6838 -8.5554 -9.0545 -8.8435 -13.1039 -9.2014 -10.5132 -8.2917
#18 -7.8139 -6.3981 -7.0177 -9.9497 -6.8967 -7.4360 -7.8960 -7.7172 -7.7402 -7.6044 -9.4315 -6.5126
#19 -7.7791 -5.1361 -6.1350 -10.0236 -6.4178 -7.2561 -8.4832 -8.0752 -7.6749 -7.5310 -7.3381 -5.2859
#20 -8.7288 -6.8535 -6.8611 -10.1206 -8.0806 -8.0215 -8.2490 -8.4467 -8.6777 -8.0888 -8.7366 -8.5228
#21 -9.9892 -7.4999 -7.8347 -10.3566 -8.5581 -8.7530 -9.8498 -8.7204 -10.0927 -10.1350 -10.1805 -8.6313
#22 -8.2565 -6.4141 -7.0828 -10.3714 -7.8222 -8.3561 -8.1644 -7.6854 -8.1602 -7.8964 -9.2537 -7.3795
#23 -10.5596 -8.4695 -11.0236 -10.9863 -10.5045 -10.4873 -10.8490 -10.4558 -10.5967 -10.0067 -11.5786 -8.8920
#24 -7.4290 -6.3265 -6.5829 -9.9197 -7.5716 -7.3804 -7.3889 -7.2018 -7.2735 -8.3577 -7.8655 -6.8204
#25 -8.6966 -7.3209 -7.3584 -10.2487 -8.6459 -8.4864 -8.7351 -8.7708 -8.7751 -8.6232 -9.5188 -8.2231
#26 -10.4036 -8.1406 -9.8170 -10.7759 -9.4746 -9.9278 -10.2736 -9.8876 -10.8830 -10.4039 -11.7137 -9.0665
#27 -8.3085 -6.9525 -9.0720 -8.6901 -8.3203 -7.6965 -8.4551 -7.5666 -8.2597 -8.1728 -8.3824 -7.7096
#28 -10.3143 -8.2867 -11.8390 -12.3479 -9.0235 -9.4168 -10.7287 -9.4159 -10.5844 -9.9678 -9.3942 -8.9728
#29 -9.2996 -8.7272 -9.7385 -11.1071 -9.1716 -9.0826 -9.3372 -8.8763 -9.4594 -8.7742 -8.4608 -8.6932
#30 -8.1476 -6.9149 -9.4497 -9.5444 -7.0898 -7.0563 -8.2066 -7.0195 -8.0732 -8.0185 -10.4707 -6.9506
#31 -8.9102 -8.1518 -9.3229 -11.1002 -8.6799 -8.4040 -8.9522 -8.2892 -8.9591 -8.0575 -11.3062 -8.0516
#32 -9.8999 -7.6313 -8.0334 -10.4726 -8.0854 -8.3027 -9.4242 -7.6278 -9.0285 -8.4252 -8.0141 -7.7741
Average -9.7745 -7.3760 -9.1437 -11.7868 -8.9772 -9.0308 -9.9603 -8.9840 -9.8945 -9.4487 -10.2170 -8.0500

Full proposed dataset is available in here. This link is updated in 2025/01/16.

Reference

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published