The Agent System is an adaptive AI architecture that autonomously generates evaluation criteria, produces multiple response candidates, and iteratively improves through confidence-based self-correction. The system leverages LLM-as-a-judge mechanisms combined with log probability confidence scoring to deliver high-quality outputs while continuously enhancing its own evaluation capabilities and prompt strategies.
- Agent creates 3-5 response candidates for each user prompt
- Each response includes explicit chain-of-thought reasoning
- Responses tagged with initial confidence estimates
- Parallel generation paths for diverse output exploration
- Dynamically creates evaluation criteria based on task context
- Multiple specialized judge models for different evaluation aspects
- Extracts confidence scores from model token probabilities
- Configurable confidence thresholds (e.g., >90% auto-accept, 50-90% human review, <50% auto-reject)
- Identifies failure modes and success patterns
- Creates new evaluation criteria based on historical performance
- Generates improved prompts for both response generation and evaluation
- Develops specialized evaluation tools for domain-specific tasks
- Episodic Memory: Stores interaction history and performance metrics
- Semantic Memory: Maintains knowledge about user preferences and successful patterns
- Vector Embeddings: MongoDB Atlas vector search for semantic similarity matching
User Input → Response Generator → Multiple Candidates → Judge Evaluation →
Confidence Analysis → Threshold Decision → Output/Correction Loop →
Memory Storage → Pattern Analysis → Criteria/Prompt Updates
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#ff6b6b', 'primaryTextColor': '#000', 'primaryBorderColor': '#ff6b6b', 'lineColor': '#333', 'secondaryColor': '#4ecdc4', 'tertiaryColor': '#45b7d1'}}}%%
graph TD
UserPrompt[User Prompt Input] --> ResponseGen[Response Generation Pipeline]
ResponseGen --> Response1[Response 1<br/>• Confidence Score<br/>• Message Content]
ResponseGen --> Response2[Response 2<br/>• Confidence Score<br/>• Message Content]
ResponseGen --> Response3[Response 3<br/>• Confidence Score<br/>• Message Content]
Response1 --> JudgeSystem[LLM-as-Judge<br/>Meta-Evaluation]
Response2 --> JudgeSystem
Response3 --> JudgeSystem
JudgeSystem --> LogProbs[Log Probabilities<br/>Confidence Analysis]
LogProbs --> ConfidenceAvg[Confidence Average<br/>Calculation]
ConfidenceAvg --> Threshold{Confidence<br/>Threshold<br/>Analysis}
Threshold -->|>90% Auto-Accept| Output[Final Output<br/>Delivery]
Threshold -->|50-90% Review| HumanReview[Human Review<br/>Required]
Threshold -->|<50% Reject| AgentCorrection[Agent Corrective<br/>Logic Engine]
AgentCorrection --> CriteriaGen[Dynamic Criteria<br/>Generation]
AgentCorrection --> PromptOpt[Prompt Strategy<br/>Optimization]
AgentCorrection --> ToolCreation[Specialized Tool<br/>Development]
CriteriaGen --> MemoryStore[Memory & Knowledge<br/>Management System]
PromptOpt --> MemoryStore
ToolCreation --> MemoryStore
MemoryStore --> EpisodicMem[Episodic Memory<br/>Interaction History]
MemoryStore --> SemanticMem[Semantic Memory<br/>User Preferences]
MemoryStore --> VectorStore[Vector Embeddings<br/>MongoDB Atlas]
HumanReview --> Feedback[User Feedback<br/>Upvote/Downvote]
Output --> Feedback
Feedback --> MemoryStore
style UserPrompt fill:#e1f5fe
style ResponseGen fill:#f3e5f5
style JudgeSystem fill:#fff3e0
style Threshold fill:#f1f8e9
style AgentCorrection fill:#ffebee
style MemoryStore fill:#f9fbe7
%%{init: {'theme': 'base', 'themeVariables': {'primaryColor': '#2196f3', 'primaryTextColor': '#000', 'primaryBorderColor': '#2196f3'}}}%%
graph LR
subgraph "Frontend Layer"
UI[Real-time Confidence Display]
end
subgraph "API Layer"
FastAPI[FastAPI Server<br/>• Async Processing]
end
subgraph "Orchestration Layer"
LangGraph[LangGraph<br/>• State Machine Workflow<br/>• Agent Coordination<br/>]
LangMem[LangMem<br/>• Long-term Memory<br/>• Cross-session Context<br/>• Knowledge Persistence]
end
subgraph "ML Layer"
PrimaryLLM[GPT-4/Claude<br/>• Response Generation<br/>• Multi-candidate Output]
JudgeLLM[Judge LLM<br/>• Quality Evaluation<br/>• Confidence Scoring<br/>• Meta-assessment]
Embeddings[Text Embeddings<br/>• Semantic Similarity<br/>• Vector Representations]
end
subgraph "Storage Layer"
MongoDB[MongoDB Atlas<br/>• Vector Search<br/>• Semantic Indexing]
end
UI --> FastAPI
FastAPI --> LangGraph
LangGraph --> LangMem
LangGraph --> PrimaryLLM
LangGraph --> JudgeLLM
LangMem --> MongoDB
Embeddings --> MongoDB
style UI fill:#e3f2fd
style FastAPI fill:#e8f5e8
style LangGraph fill:#fff3e0
style LangMem fill:#f3e5f5
style PrimaryLLM fill:#ffebee
style JudgeLLM fill:#f1f8e9
style MongoDB fill:#e1f5fe
- GPT-4/Claude for response generation
- Separate model instance for evaluation tasks
- Log probability extraction and normalization
- Text embedding models for semantic search
- Response quality scores (human evaluation baseline)
- Confidence calibration accuracy (predicted vs. actual quality)
- Self-improvement rate (performance gains over time)
- User satisfaction ratings
- Response latency (<2s for generation, <1s for evaluation)
- Confidence score accuracy (±10% of human assessment)
- Memory retrieval speed (<100ms for semantic search)
- System uptime and reliability (99.9% target)
- Human oversight for low-confidence decisions
- Regular evaluation of judge performance
- Fallback mechanisms for system failures
- Audit trails for all decisions and improvements