A system's potential states are mapped out in an energy landscape. The idea is commonly applied in physics, chemistry, and biochemistry to represent, among other things, all conceivable chemical configurations, the spatial locations of molecules interacting in a system, or parameters and their corresponding energy levels, usually Gibbs free energy.
Where, G stands for Gibbs fre energy, H stands for Heat content, T is absolute temperature and S represents entrophy of the system.
g_anaeig_mpi -v eigenvec.trr -f file.xtc -s file.tpr -eig eigenvalues.xvg -first 1 -last 1 -nframes 1000 -extr ev1.pdb | chose c-alpha (option3) X2
g_anaeig_mpi -v eigenvec.trr -f file.xtc -s file.tpr -eig eigenvalues.xvg -first 2 -last 2 -nframes 1000 -extr ev1.pdb | chose c-alpha (option3) X2
python2 xpm2txt.py -f gibbs.xpm -o fel.txt
Python code to plot the graph is given below.
#importin the libraries: import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib import cm
#for the plot to be interactive %matplotlib notebook
df = pd.read_csv('file1.csv')
x = df[df.columns[0]] y = df[df.columns[1]] z = df[df.columns[2]]
fig = plt.figure() ax = fig.add_subplot(111, projection='3d')
surf = ax.plot_trisurf(x, y, z, cmap='turbo', linewidth=0.2)
ax.grid(False)
ax.set_xticklabels([]) ax.set_yticklabels([]) ax.set_zticklabels([])
fig.colorbar(surf, shrink=0.5, aspect=5)
ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_zlabel('Gibbs Free Energy')
ax.scatter(x, y, z.min() - 0.1*(z.max()-z.min()), c=z, cmap='plasma')
ax.set_zlim(z.min() - 0.1*(z.max()-z.min()), z.max())
plt.show()
plt.savefig('3dimensional_FEL.png', dpi=600, bbox_inches='tight')
import pandas as pd import matplotlib.pyplot as plt
df = pd.read_csv('file1.csv', header=0) # Assuming the column names are in the first row
x = df.iloc[:, 0] y = df.iloc[:, 1] z = df.iloc[:, 2]
fig, ax = plt.subplots()
contour = ax.tricontourf(x, y, z, cmap='turbo')
ax.set_xticklabels([]) ax.set_yticklabels([])
ax.set_xlabel('PC1') ax.set_ylabel('PC2') ax.set_title('Gibbs Free Energy')
cbar = fig.colorbar(contour)
plt.show()
plt.savefig('2dimensional_image_FEL.png', dpi=600, bbox_inches='tight')
find the native form of the protein residing in the energy basins and try to determine the corresponding frames from the simulation trajectory
gmx trjconv -s md100.tpr -f md_noPBC.xtc -dt 10000 -o hs_each10ns.pdb