Skip to content

Commit ec837a5

Browse files
Merge pull request #1404 from redis/revert-1310-ai-restructure
Revert "Ai restructure"
2 parents ab61324 + f96d7db commit ec837a5

File tree

11 files changed

+172
-200
lines changed

11 files changed

+172
-200
lines changed

README.md

Lines changed: 2 additions & 2 deletions
Original file line numberDiff line numberDiff line change
@@ -1,6 +1,6 @@
11
# Redis Docs
22

3-
OPEN SOURCE LICENSE VS. TRADEMARKS. The three-clause BSD license gives you the right to redistribute and use the software in source and binary forms, with or without modification, under certain conditions. However, open source licenses like the three-clause BSD license do not address trademarks. For further details please read the [Redis Trademark Policy](https://redis.io/legal/trademark-policy/).
3+
OPEN SOURCE LICENSE VS. TRADEMARKS. The three-clause BSD license gives you the right to redistribute and use the software in source and binary forms, with or without modification, under certain conditions. However, open source licenses like the three-clause BSD license do not address trademarks. For further details please read the [Redis Trademark Policy](https://redis.io/legal/trademark-policy/)."
44

55
## A note for Issue and PR submitters
66

@@ -204,4 +204,4 @@ nil pointer evaluating page.Page.Params
204204
```
205205
206206
This happened for us when Hugo executed the `bannerText` logic, which inspected all parent pages by checking if they have a banner text set. The problem was that one of the parent folders was missing an `_index.md` file, which meant the folder couldn't be identified as a page. The solution was to add an `_index.md` file to the folder that didn't have it yet.
207-
<!-- -->
207+
<!-- -->

content/develop/ai/_index.md renamed to content/develop/ai/index.md

Lines changed: 42 additions & 18 deletions
Original file line numberDiff line numberDiff line change
@@ -8,14 +8,13 @@ categories:
88
- rc
99
description: An overview of Redis for AI documentation
1010
linkTitle: Redis for AI
11-
hideListLinks: true
1211
weight: 40
1312
---
14-
Redis stores and indexes vector embeddings that semantically represent unstructured data including text passages, images, videos, or audio. Store vectors and the associated metadata within [hashes]({{< relref "/develop/data-types/hashes" >}}) or [JSON]({{< relref "/develop/data-types/json" >}}) documents for [indexing]({{< relref "/develop/interact/search-and-query/indexing" >}}) and [querying]({{< relref "/develop/interact/search-and-query/query" >}}). Use the [vector sets]({{< relref "/develop/data-types/vector-sets" >}}) preview data type to add items to a set, and retrieve a subset of items that are the most similar to a specified vector.
13+
Redis stores and indexes vector embeddings that semantically represent unstructured data including text passages, images, videos, or audio. Store vectors and the associated metadata within [hashes]({{< relref "/develop/data-types/hashes" >}}) or [JSON]({{< relref "/develop/data-types/json" >}}) documents for [indexing]({{< relref "/develop/interact/search-and-query/indexing" >}}) and [querying]({{< relref "/develop/interact/search-and-query/query" >}}).
1514

1615
| Vector | RAG | RedisVL |
1716
| :-- | :-- | :-- |
18-
| {{<image filename="images/ai-cube.png" alt="AI Redis icon.">}}[Redis vector database quick start guide]({{< relref "/develop/ai/vector-database" >}}) |{{<image filename="images/ai-brain.png" alt="AI Redis icon.">}} [Retrieval-Augmented Generation quick start guide]({{< relref "/develop/ai/rag" >}}) | {{<image filename="images/ai-lib.png" alt="AI Redis icon.">}}[Redis vector Python client library documentation]({{< relref "/integrate/redisvl/" >}}) |
17+
| {{<image filename="images/ai-cube.png" alt="AI Redis icon.">}}[Redis vector database quick start guide]({{< relref "/develop/get-started/vector-database" >}}) |{{<image filename="images/ai-brain.png" alt="AI Redis icon.">}} [Retrieval-Augmented Generation quick start guide]({{< relref "/develop/get-started/rag" >}}) | {{<image filename="images/ai-lib.png" alt="AI Redis icon.">}}[Redis vector Python client library documentation]({{< relref "/integrate/redisvl/" >}}) |
1918

2019
#### Overview
2120

@@ -30,14 +29,10 @@ This page organized into a few sections depending on what you’re trying to do:
3029

3130
## How to's
3231

33-
[**Create a vector index**]({{< relref "/develop/ai/vector-fields/" >}}): Redis maintains a secondary index over your data with a defined schema (including vector fields and metadata). Redis supports `FLAT` and `HNSW` vector index types. Redis stores vectors and metadata in hashes or JSON objects. Redis supports several advanced querying strategies with vector fields including k-nearest neighbor KNN, vector range queries, and metadata filters.
34-
35-
#### Learn how to index and query vector embeddings
36-
* [redis-py (Python)]({{< relref "/develop/clients/redis-py/vecsearch" >}})
37-
* [NRedisStack (C#/.NET)]({{< relref "/develop/clients/dotnet/vecsearch" >}})
38-
* [node-redis (JavaScript)]({{< relref "/develop/clients/nodejs/vecsearch" >}})
39-
* [Jedis (Java)]({{< relref "/develop/clients/jedis/vecsearch" >}})
40-
* [go-redis (Go)]({{< relref "/develop/clients/go/vecsearch" >}})
32+
1. [**Create a vector index**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#create-a-vector-index" >}}): Redis maintains a secondary index over your data with a defined schema (including vector fields and metadata). Redis supports [`FLAT`]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#flat-index" >}}) and [`HNSW`]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#hnsw-index" >}}) vector index types.
33+
1. [**Store and update vectors**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#store-and-update-vectors" >}}): Redis stores vectors and metadata in hashes or JSON objects.
34+
1. [**Search with vectors**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#search-with-vectors" >}}): Redis supports several advanced querying strategies with vector fields including k-nearest neighbor ([KNN]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#knn-vector-search" >}})), [vector range queries]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#vector-range-queries" >}}), and [metadata filters]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#filters" >}}).
35+
1. [**Configure vector queries at runtime**]({{< relref "develop/interact/search-and-query/advanced-concepts/vectors#runtime-query-parameters" >}}). Select the best filter mode to optimize query execution.
4136

4237
## Concepts
4338

@@ -49,9 +44,43 @@ Learn to perform vector search and use gateways and semantic caching in your AI/
4944

5045
## Quickstarts
5146

52-
Get started with the following Redis Python notebook.
47+
Quickstarts or recipes are useful when you are trying to build specific functionality. For example, you might want to do RAG with LangChain or set up LLM memory for you AI agent. Get started with the following Redis Python notebooks.
48+
49+
* [The place to start if you are brand new to Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/redis-intro/00_redis_intro.ipynb)
50+
51+
#### Hybrid and vector search
52+
Vector search retrieves results based on the similarity of high-dimensional numerical embeddings, while hybrid search combines this with traditional keyword or metadata-based filtering for more comprehensive results.
53+
* [Implementing hybrid search with Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/02_hybrid_search.ipynb)
54+
* [Vector search with Redis Python client](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/00_redispy.ipynb)
55+
* [Vector search with Redis Vector Library](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/vector-search/01_redisvl.ipynb)
56+
57+
#### RAG
58+
Retrieval Augmented Generation (aka RAG) is a technique to enhance the ability of an LLM to respond to user queries. The retrieval part of RAG is supported by a vector database, which can return semantically relevant results to a user’s query, serving as contextual information to augment the generative capabilities of an LLM.
59+
* [RAG from scratch with the Redis Vector Library](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/01_redisvl.ipynb)
60+
* [RAG using Redis and LangChain](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/02_langchain.ipynb)
61+
* [RAG using Redis and LlamaIndex](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/03_llamaindex.ipynb)
62+
* [Advanced RAG with redisvl](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
63+
* [RAG using Redis and Nvidia](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/05_nvidia_ai_rag_redis.ipynb)
64+
* [Utilize RAGAS framework to evaluate RAG performance](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/06_ragas_evaluation.ipynb)
65+
* [Vector search with Azure](https://techcommunity.microsoft.com/blog/azuredevcommunityblog/vector-similarity-search-with-azure-cache-for-redis-enterprise/3822059)
66+
* [RAG with Spring AI](https://redis.io/blog/building-a-rag-application-with-redis-and-spring-ai/)
67+
* [RAG with Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main)
68+
* [Notebook for additional tips and techniques to improve RAG quality](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/RAG/04_advanced_redisvl.ipynb)
69+
70+
#### Agents
71+
AI agents can act autonomously to plan and execute tasks for the user.
72+
* [Notebook to get started with LangGraph and agents](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/00_langgraph_redis_agentic_rag.ipynb)
73+
* [Build a collaborative movie recommendation system using Redis for data storage, CrewAI for agent-based task execution, and LangGraph for workflow management.](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/agents/01_crewai_langgraph_redis.ipynb)
74+
75+
#### LLM memory
76+
LLMs are stateless. To maintain context within a conversation chat sessions must be stored and resent to the LLM. Redis manages the storage and retrieval of chat sessions to maintain context and conversational relevance.
77+
* [LLM session manager with semantic similarity](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/llm-session-manager/00_llm_session_manager.ipynb)
78+
* [Handle multiple simultaneous chats with one instance](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/llm-session-manager/01_multiple_sessions.ipynb)
5379

54-
* [The place to start if you are brand new to Redis](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/redis-intro/00_redis_intro.ipynb). See the [Redis AI notebooks collection]({{< relref "/develop/ai/notebooks-collection" >}}) for the complete list.
80+
#### Semantic caching
81+
An estimated 31% of LLM queries are potentially redundant. Redis enables semantic caching to help cut down on LLM costs quickly.
82+
* [Build a semantic cache using the Doc2Cache framework and Llama3.1](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/doc2cache_llama3_1.ipynb)
83+
* [Build a semantic cache with Redis and Google Gemini](https://colab.research.google.com/github/redis-developer/redis-ai-resources/blob/main/python-recipes/semantic-cache/semantic_caching_gemini.ipynb)
5584

5685
#### Computer vision
5786
Build a facial recognition system using the Facenet embedding model and RedisVL.
@@ -68,13 +97,8 @@ Need a deeper-dive through different use cases and topics?
6897
* [Agentic RAG](https://github.com/redis-developer/agentic-rag) - A tutorial focused on agentic RAG with LlamaIndex and Amazon Bedrock
6998
* [RAG on Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main) - A RAG tutorial featuring Redis with Vertex AI
7099
* [RAG workbench](https://github.com/redis-developer/redis-rag-workbench) - A development playground for exploring RAG techniques with Redis
71-
* [Vector search with Azure](https://techcommunity.microsoft.com/blog/azuredevcommunityblog/vector-similarity-search-with-azure-cache-for-redis-enterprise/3822059)
72-
* [RAG with Spring AI](https://redis.io/blog/building-a-rag-application-with-redis-and-spring-ai/)
73-
* [RAG with Vertex AI](https://github.com/redis-developer/gcp-redis-llm-stack/tree/main)
74100

75101
#### Recommendation system
76-
* [Intro content filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/00_content_filtering.ipynb)
77-
* [Intro collaborative filtering example with redisvl](https://github.com/redis-developer/redis-ai-resources/blob/main/python-recipes/recommendation-systems/01_collaborative_filtering.ipynb)
78102
* [Recommendation systems w/ NVIDIA Merlin & Redis](https://github.com/redis-developer/redis-nvidia-recsys) - Three examples, each escalating in complexity, showcasing the process of building a realtime recsys with NVIDIA and Redis
79103
* [Redis product search](https://github.com/redis-developer/redis-product-search) - Build a real-time product search engine using features like full-text search, vector similarity, and real-time data updates
80104

content/develop/ai/notebooks-collection.md

Lines changed: 0 additions & 41 deletions
This file was deleted.

0 commit comments

Comments
 (0)