Skip to content

[Feature, Example] A3C Atari Implementation for TorchRL #3001

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 15 commits into
base: main
Choose a base branch
from
Open
Show file tree
Hide file tree
Changes from 2 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions sota-implementations/a3c/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,21 @@
# Reproducing Asynchronous Advantage Actor Critic (A3C) Algorithm Results

This repository contains scripts that enable training agents using the Asynchronous Advantage Actor Critic (A3C) Algorithm on Atari environments. We follow the original paper [Asynchronous Methods for Deep Reinforcement Learning](https://arxiv.org/abs/1602.01783) by Mnih et al. (2016) to implement the A3C algorithm with a fixed number of steps during the collection phase.

## Examples Structure

Please note that each example is independent of each other for the sake of simplicity. Each example contains the following files:

1. **Main Script:** The definition of algorithm components and the training loop can be found in the main script (e.g. `a3c_atari.py`).

2. **Utils File:** A utility file is provided to contain various helper functions, generally to create the environment and the models (e.g. `utils_atari.py`).

3. **Configuration File:** This file includes default hyperparameters specified in the original paper. Users can modify these hyperparameters to customize their experiments (e.g. `config_atari.yaml`).

## Running the Examples

You can execute the A3C algorithm on Atari environments by running the following command:

```bash
python a3c_atari.py
```
227 changes: 227 additions & 0 deletions sota-implementations/a3c/a3c_atari.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,227 @@
from __future__ import annotations

from copy import deepcopy

import hydra
import torch

import torch.multiprocessing as mp
import torch.nn as nn
import torch.optim
import tqdm

from torchrl.collectors import SyncDataCollector
from torchrl.objectives import A2CLoss
from torchrl.objectives.value.advantages import GAE

from torchrl.record.loggers import generate_exp_name, get_logger
from utils_atari import make_parallel_env, make_ppo_models


torch.set_float32_matmul_precision("high")


class SharedAdam(torch.optim.Adam):
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

shouldn't we move this to the utils file?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Sure, will do it

def __init__(self, params, **kwargs):
super().__init__(params, **kwargs)
for group in self.param_groups:
for p in group["params"]:
state = self.state[p]
state["step"] = torch.zeros(1)
state["exp_avg"] = torch.zeros_like(p.data)
state["exp_avg_sq"] = torch.zeros_like(p.data)
state["exp_avg"].share_memory_()
state["exp_avg_sq"].share_memory_()
state["step"].share_memory_()


class A3CWorker(mp.Process):
def __init__(self, name, cfg, global_actor, global_critic, optimizer, logger=None):
super().__init__()
self.name = name
self.cfg = cfg

self.optimizer = optimizer

self.device = cfg.loss.device or torch.device(
"cuda:0" if torch.cuda.is_available() else "cpu"
)

self.frame_skip = 4
self.total_frames = cfg.collector.total_frames // self.frame_skip
self.frames_per_batch = cfg.collector.frames_per_batch // self.frame_skip
self.mini_batch_size = cfg.loss.mini_batch_size // self.frame_skip
self.test_interval = cfg.logger.test_interval // self.frame_skip

self.global_actor = global_actor
self.global_critic = global_critic
self.local_actor = deepcopy(global_actor)
self.local_critic = deepcopy(global_critic)

self.logger = logger

self.adv_module = GAE(
gamma=cfg.loss.gamma,
lmbda=cfg.loss.gae_lambda,
value_network=self.local_critic,
average_gae=True,
vectorized=not cfg.compile.compile,
device=self.device,
)
self.loss_module = A2CLoss(
actor_network=self.local_actor,
critic_network=self.local_critic,
loss_critic_type=cfg.loss.loss_critic_type,
entropy_coef=cfg.loss.entropy_coef,
critic_coef=cfg.loss.critic_coef,
)

self.adv_module.set_keys(done="end-of-life", terminated="end-of-life")
self.loss_module.set_keys(done="end-of-life", terminated="end-of-life")

def update(self, batch, max_grad_norm=None):
if max_grad_norm is None:
max_grad_norm = self.cfg.optim.max_grad_norm

loss = self.loss_module(batch)
loss_sum = loss["loss_critic"] + loss["loss_objective"] + loss["loss_entropy"]
loss_sum.backward()

for local_param, global_param in zip(
self.local_actor.parameters(), self.global_actor.parameters()
):
global_param._grad = local_param.grad

for local_param, global_param in zip(
self.local_critic.parameters(), self.global_critic.parameters()
):
global_param._grad = local_param.grad

gn = torch.nn.utils.clip_grad_norm_(
self.loss_module.parameters(), max_norm=max_grad_norm
)
Comment on lines +110 to +122
Copy link
Collaborator

@vmoens vmoens Jul 10, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

can you explain what we do here? What do we use the _grad for?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

_grad is used to store the gradients for each parameter.
We copy local gradients to the global model so the global model can be updated with the optimizer.
This is a key step in A3C, where multiple workers asynchronously update a shared global model.


self.optimizer.step()
self.optimizer.zero_grad(set_to_none=True)

return (
loss.select("loss_critic", "loss_entropy", "loss_objective")
.detach()
.set("grad_norm", gn)
)

def run(self):
cfg = self.cfg

collector = SyncDataCollector(
create_env_fn=make_parallel_env(
cfg.env.env_name,
num_envs=cfg.env.num_envs,
device=self.device,
gym_backend=cfg.env.backend,
),
policy=self.local_actor,
frames_per_batch=self.frames_per_batch,
total_frames=self.total_frames,
device=self.device,
storing_device=self.device,
policy_device=self.device,
compile_policy=False,
cudagraph_policy=False,
)

collected_frames = 0
num_network_updates = 0
pbar = tqdm.tqdm(total=self.total_frames)
num_mini_batches = self.frames_per_batch // self.mini_batch_size
total_network_updates = (
self.total_frames // self.frames_per_batch
) * num_mini_batches
lr = cfg.optim.lr

c_iter = iter(collector)
total_iter = len(collector)

for _ in range(total_iter):
data = next(c_iter)

metrics_to_log = {}
frames_in_batch = data.numel()
collected_frames += self.frames_per_batch * self.frame_skip
pbar.update(frames_in_batch)

episode_rewards = data["next", "episode_reward"][data["next", "terminated"]]
if len(episode_rewards) > 0:
episode_length = data["next", "step_count"][data["next", "terminated"]]
metrics_to_log["train/reward"] = episode_rewards.mean().item()
metrics_to_log[
"train/episode_length"
] = episode_length.sum().item() / len(episode_length)

with torch.no_grad():
data = self.adv_module(data)
data_reshape = data.reshape(-1)
losses = []

mini_batches = data_reshape.split(self.mini_batch_size)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

To shuffle things a bit I usually rely on a replay buffer instance rather than just splitting the data

for batch in mini_batches:
alpha = 1.0
if cfg.optim.anneal_lr:
alpha = 1 - (num_network_updates / total_network_updates)
for group in self.optimizer.param_groups:
group["lr"] = lr * alpha

num_network_updates += 1
loss = self.update(batch).clone()
losses.append(loss)

losses = torch.stack(losses).float().mean()

for key, value in losses.items():
metrics_to_log[f"train/{key}"] = value.item()

metrics_to_log["train/lr"] = lr * alpha
if self.logger:
for key, value in metrics_to_log.items():
self.logger.log_scalar(key, value, collected_frames)
collector.shutdown()


@hydra.main(config_path="", config_name="config_atari", version_base="1.1")
def main(cfg: DictConfig): # noqa: F821

global_actor, global_critic, global_critic_head = make_ppo_models(
cfg.env.env_name, device=cfg.loss.device, gym_backend=cfg.env.backend
)
global_model = nn.ModuleList([global_actor, global_critic_head])
global_model.share_memory()
optimizer = SharedAdam(global_model.parameters(), lr=cfg.optim.lr)

num_workers = cfg.multiprocessing.num_workers

if num_workers is None:
num_workers = mp.cpu_count()
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

we should have way fewer workers - I think we need users to tell us how many.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

That can be configured in the config_atari. You want me to explicitly set it to some constant here?

logger = None
if cfg.logger.backend:
exp_name = generate_exp_name("A3C", f"{cfg.logger.exp_name}_{cfg.env.env_name}")
logger = get_logger(
cfg.logger.backend,
logger_name="a3c",
experiment_name=exp_name,
wandb_kwargs={
"config": dict(cfg),
"project": cfg.logger.project_name,
"group": cfg.logger.group_name,
},
)
Copy link
Collaborator

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

What I usually see is that the logger is only passed to the first worker.
Another thing is that you may want to assume that the logger isn't serializable and should be instantiated locally within the worker.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Oh yea, I did that because I thought logging any single worker should be a good representative of the global model since anyway the weights are being copied. Logging all the worker might not be really useful but that can be done as well.


workers = [
A3CWorker(f"worker_{i}", cfg, global_actor, global_critic, optimizer, logger)
for i in range(num_workers)
]
[w.start() for w in workers]
[w.join() for w in workers]


if __name__ == "__main__":
main()
46 changes: 46 additions & 0 deletions sota-implementations/a3c/config_atari.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,46 @@
# Environment
env:
env_name: PongNoFrameskip-v4
backend: gymnasium
num_envs: 1

# collector
collector:
frames_per_batch: 800
total_frames: 40_000_000

# logger
logger:
backend: wandb
project_name: torchrl_example_a2c
group_name: null
exp_name: Atari_Schulman17
test_interval: 40_000_000
num_test_episodes: 3
video: False

# Optim
optim:
lr: 0.0001
eps: 1.0e-8
weight_decay: 0.0
max_grad_norm: 40.0
anneal_lr: True

# loss
loss:
gamma: 0.99
mini_batch_size: 80
gae_lambda: 0.95
critic_coef: 0.25
entropy_coef: 0.01
loss_critic_type: l2
device:

compile:
compile: False
compile_mode:
cudagraphs: False

multiprocessing:
num_workers: 16
Loading
Loading