-
Notifications
You must be signed in to change notification settings - Fork 689
[ET-VK][Ops] torchao.dequantize_affine vulkan impl and shader and cleanup #12576
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
…anup # Changes * Implement `torchao.dequantize_affine` operator in Vulkan backend with comprehensive texture and buffer storage support * Add block-wise dequantization mode in `dequantize_texture.glsl` and `dequantize_buffer.glsl` shaders for configurable tensor block dequantization * Extend dequantization infrastructure in `Dequantize.cpp` to handle affine transformations with configurable block sizes and quantization parameters * Support integer-to-floating-point conversion with precise reconstruction of original values BE: Improved the documentation in the shader logic which is more detailed and clear # Motivation The existing Vulkan quantization infrastructure lacked support for the `torchao.dequantize_affine` operator, which is essential for completing the quantization-dequantization cycle in dynamic quantization workflows. The `dequantize_affine` operator provides flexible block-wise dequantization that reconstructs floating-point values from quantized integer blocks, enabling: * **Block-wise Dequantization**: Reconstructs floating-point values from configurable tensor blocks using separate scale and zero-point parameters, enabling precise recovery of original data distributions * **Affine Transformation**: Uses the formula `value = (qvalue - zero_point) * scale` for accurate integer-to-floating-point mapping * **TorchAO Integration**: Seamless compatibility with TorchAO quantization workflows and completes the quantization-dequantization round-trip # Operator Description The `dequantize_affine` operator converts n-bit integer tensor values back to floating-point representations using pre-computed quantization parameters (scale and zero_point) applied to configurable tensor blocks. Block-wise dequantization divides tensors into blocks and applies separate dequantization parameters to each block, allowing fine-grained reconstruction of the original floating-point precision. The dequantization formula is: `value = (qvalue - zero_point) * scale` **Storage Requirements**: Scale and zero_point tensors must use buffer storage with width-packed layout. Input/output tensors support both buffer and texture storage with standard axis mapping. Input tensors must be integer types (kByte, kChar, kInt). # Block-wise Dequantization Implementation Block-wise dequantization enables fine-grained reconstruction by dividing tensors into blocks and applying separate dequantization parameters to each block. The implementation uses the same key data structures computed in `Dequantize.cpp`: * **`block_size_vec`**: WHCN-ordered block dimensions converted from PyTorch NCHW layout (e.g., [3,3,2,1] for 3×3×2×1 blocks) * **`tensor_size_whcn`**: Input tensor dimensions converted to WHCN layout using `utils::make_whcn_ivec4()` * **`num_blocks_vec`**: Number of blocks per dimension calculated as `tensor_size_whcn / block_size_vec` * **`block_stride_vec`**: Pre-computed linear strides for block grid indexing `{1, #W, #W*#H, #W*#H*#C}` to enable efficient block ID calculation The block coordinate calculation uses: `bcoord = tidx / blockSize` where `tidx` is the tensor coordinate in WHCN layout, then the linear block ID is computed as: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w` # Shader Algorithm Overview ## Texture Storage Implementation (`dequantize_texture.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on texture dimensions - **Local WG Size**: Default with special handling for batch dimension dequantization (Z dimension set to 1 for proper workgroup dispatching when `global_workgroup_size[2] > 1`) **Block-wise Mode Algorithm**: The shader processes 3D texture positions where each position represents a texel containing 4 width-packed integer components. For each texel at position `pos`, it calculates a base tensor index `base_tidx = ivec4(pos.x * 4, pos.y, pos.z, 0)` to account for width-packing. For each of the 4 components in the texel, it computes the actual tensor coordinate: `tidx = ivec4(base_tidx.x + i, base_tidx.y, (foldedZ % C_total), (foldedZ / C_total))` where `foldedZ = pos.z` handles batch-channel folding in 4D tensors and `C_total = numBlocks.z * blockSize.z` represents the total channel dimension. The block coordinate is calculated using integer division: `bcoord = tidx / blockSize`, then the linear block ID uses pre-computed strides: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. Each integer component is dequantized using its corresponding block's parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` where `dequantize_val()` applies the formula `(qvalue - zero_point) * scale`. The reconstructed floating-point values are written to the output texel with proper type handling for double precision outputs. ## Buffer Storage Implementation (`dequantize_buffer.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on buffer element count - **Local WG Size**: Default sizing without special constraints **Block-wise Mode Algorithm**: The shader processes linear buffer indices using `gl_GlobalInvocationID.x` as the output buffer index. It converts this to tensor coordinates using `bufi_to_tidx(out_bufi, t_out_strides, out_dim_order)` which handles the buffer-to-tensor index mapping with proper stride calculations. For each element, it computes the block coordinate directly: `bcoord = out_tidx / blockSize` where `out_tidx` is the 4D tensor coordinate in WHCN layout. The linear block ID calculation uses the same pre-computed stride approach: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. The quantized integer value is loaded using the corresponding input buffer index: `qvalue = t_in[in_bufi]` where `in_bufi = tidx_to_bufi(out_tidx, t_in_strides)`. Dequantization applies the block-specific parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` to reconstruct the original floating-point value. **Future Improvements**: Dynamic workgroup sizing based on block dimensions Differential Revision: [D78435552](https://our.internmc.facebook.com/intern/diff/D78435552/) [ghstack-poisoned]
🔗 Helpful Links🧪 See artifacts and rendered test results at hud.pytorch.org/pr/pytorch/executorch/12576
Note: Links to docs will display an error until the docs builds have been completed. ✅ No FailuresAs of commit e2e6bf2 with merge base b6b7a16 ( This comment was automatically generated by Dr. CI and updates every 15 minutes. |
This PR needs a
|
This pull request was exported from Phabricator. Differential Revision: D78435552 |
…der and cleanup" # Changes * Implement `torchao.dequantize_affine` operator in Vulkan backend with comprehensive texture and buffer storage support * Add block-wise dequantization mode in `dequantize_texture.glsl` and `dequantize_buffer.glsl` shaders for configurable tensor block dequantization * Extend dequantization infrastructure in `Dequantize.cpp` to handle affine transformations with configurable block sizes and quantization parameters * Support integer-to-floating-point conversion with precise reconstruction of original values BE: Improved the documentation in the shader logic which is more detailed and clear # Motivation The existing Vulkan quantization infrastructure lacked support for the `torchao.dequantize_affine` operator, which is essential for completing the quantization-dequantization cycle in dynamic quantization workflows. The `dequantize_affine` operator provides flexible block-wise dequantization that reconstructs floating-point values from quantized integer blocks, enabling: * **Block-wise Dequantization**: Reconstructs floating-point values from configurable tensor blocks using separate scale and zero-point parameters, enabling precise recovery of original data distributions * **Affine Transformation**: Uses the formula `value = (qvalue - zero_point) * scale` for accurate integer-to-floating-point mapping * **TorchAO Integration**: Seamless compatibility with TorchAO quantization workflows and completes the quantization-dequantization round-trip # Operator Description The `dequantize_affine` operator converts n-bit integer tensor values back to floating-point representations using pre-computed quantization parameters (scale and zero_point) applied to configurable tensor blocks. Block-wise dequantization divides tensors into blocks and applies separate dequantization parameters to each block, allowing fine-grained reconstruction of the original floating-point precision. The dequantization formula is: `value = (qvalue - zero_point) * scale` **Storage Requirements**: Scale and zero_point tensors must use buffer storage with width-packed layout. Input/output tensors support both buffer and texture storage with standard axis mapping. Input tensors must be integer types (kByte, kChar, kInt). # Block-wise Dequantization Implementation Block-wise dequantization enables fine-grained reconstruction by dividing tensors into blocks and applying separate dequantization parameters to each block. The implementation uses the same key data structures computed in `Dequantize.cpp`: * **`block_size_vec`**: WHCN-ordered block dimensions converted from PyTorch NCHW layout (e.g., [3,3,2,1] for 3×3×2×1 blocks) * **`tensor_size_whcn`**: Input tensor dimensions converted to WHCN layout using `utils::make_whcn_ivec4()` * **`num_blocks_vec`**: Number of blocks per dimension calculated as `tensor_size_whcn / block_size_vec` * **`block_stride_vec`**: Pre-computed linear strides for block grid indexing `{1, #W, #W*#H, #W*#H*#C}` to enable efficient block ID calculation The block coordinate calculation uses: `bcoord = tidx / blockSize` where `tidx` is the tensor coordinate in WHCN layout, then the linear block ID is computed as: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w` # Shader Algorithm Overview ## Texture Storage Implementation (`dequantize_texture.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on texture dimensions - **Local WG Size**: Default with special handling for batch dimension dequantization (Z dimension set to 1 for proper workgroup dispatching when `global_workgroup_size[2] > 1`) **Block-wise Mode Algorithm**: The shader processes 3D texture positions where each position represents a texel containing 4 width-packed integer components. For each texel at position `pos`, it calculates a base tensor index `base_tidx = ivec4(pos.x * 4, pos.y, pos.z, 0)` to account for width-packing. For each of the 4 components in the texel, it computes the actual tensor coordinate: `tidx = ivec4(base_tidx.x + i, base_tidx.y, (foldedZ % C_total), (foldedZ / C_total))` where `foldedZ = pos.z` handles batch-channel folding in 4D tensors and `C_total = numBlocks.z * blockSize.z` represents the total channel dimension. The block coordinate is calculated using integer division: `bcoord = tidx / blockSize`, then the linear block ID uses pre-computed strides: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. Each integer component is dequantized using its corresponding block's parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` where `dequantize_val()` applies the formula `(qvalue - zero_point) * scale`. The reconstructed floating-point values are written to the output texel with proper type handling for double precision outputs. ## Buffer Storage Implementation (`dequantize_buffer.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on buffer element count - **Local WG Size**: Default sizing without special constraints **Block-wise Mode Algorithm**: The shader processes linear buffer indices using `gl_GlobalInvocationID.x` as the output buffer index. It converts this to tensor coordinates using `bufi_to_tidx(out_bufi, t_out_strides, out_dim_order)` which handles the buffer-to-tensor index mapping with proper stride calculations. For each element, it computes the block coordinate directly: `bcoord = out_tidx / blockSize` where `out_tidx` is the 4D tensor coordinate in WHCN layout. The linear block ID calculation uses the same pre-computed stride approach: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. The quantized integer value is loaded using the corresponding input buffer index: `qvalue = t_in[in_bufi]` where `in_bufi = tidx_to_bufi(out_tidx, t_in_strides)`. Dequantization applies the block-specific parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` to reconstruct the original floating-point value. **Future Improvements**: Dynamic workgroup sizing based on block dimensions Differential Revision: [D78435552](https://our.internmc.facebook.com/intern/diff/D78435552/) cc SS-JIA manuelcandales cbilgin [ghstack-poisoned]
This pull request was exported from Phabricator. Differential Revision: D78435552 |
…der and cleanup" # Changes * Implement `torchao.dequantize_affine` operator in Vulkan backend with comprehensive texture and buffer storage support * Add block-wise dequantization mode in `dequantize_texture.glsl` and `dequantize_buffer.glsl` shaders for configurable tensor block dequantization * Extend dequantization infrastructure in `Dequantize.cpp` to handle affine transformations with configurable block sizes and quantization parameters * Support integer-to-floating-point conversion with precise reconstruction of original values BE: Improved the documentation in the shader logic which is more detailed and clear # Motivation The existing Vulkan quantization infrastructure lacked support for the `torchao.dequantize_affine` operator, which is essential for completing the quantization-dequantization cycle in dynamic quantization workflows. The `dequantize_affine` operator provides flexible block-wise dequantization that reconstructs floating-point values from quantized integer blocks, enabling: * **Block-wise Dequantization**: Reconstructs floating-point values from configurable tensor blocks using separate scale and zero-point parameters, enabling precise recovery of original data distributions * **Affine Transformation**: Uses the formula `value = (qvalue - zero_point) * scale` for accurate integer-to-floating-point mapping * **TorchAO Integration**: Seamless compatibility with TorchAO quantization workflows and completes the quantization-dequantization round-trip # Operator Description The `dequantize_affine` operator converts n-bit integer tensor values back to floating-point representations using pre-computed quantization parameters (scale and zero_point) applied to configurable tensor blocks. Block-wise dequantization divides tensors into blocks and applies separate dequantization parameters to each block, allowing fine-grained reconstruction of the original floating-point precision. The dequantization formula is: `value = (qvalue - zero_point) * scale` **Storage Requirements**: Scale and zero_point tensors must use buffer storage with width-packed layout. Input/output tensors support both buffer and texture storage with standard axis mapping. Input tensors must be integer types (kByte, kChar, kInt). # Block-wise Dequantization Implementation Block-wise dequantization enables fine-grained reconstruction by dividing tensors into blocks and applying separate dequantization parameters to each block. The implementation uses the same key data structures computed in `Dequantize.cpp`: * **`block_size_vec`**: WHCN-ordered block dimensions converted from PyTorch NCHW layout (e.g., [3,3,2,1] for 3×3×2×1 blocks) * **`tensor_size_whcn`**: Input tensor dimensions converted to WHCN layout using `utils::make_whcn_ivec4()` * **`num_blocks_vec`**: Number of blocks per dimension calculated as `tensor_size_whcn / block_size_vec` * **`block_stride_vec`**: Pre-computed linear strides for block grid indexing `{1, #W, #W*#H, #W*#H*#C}` to enable efficient block ID calculation The block coordinate calculation uses: `bcoord = tidx / blockSize` where `tidx` is the tensor coordinate in WHCN layout, then the linear block ID is computed as: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w` # Shader Algorithm Overview ## Texture Storage Implementation (`dequantize_texture.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on texture dimensions - **Local WG Size**: Default with special handling for batch dimension dequantization (Z dimension set to 1 for proper workgroup dispatching when `global_workgroup_size[2] > 1`) **Block-wise Mode Algorithm**: The shader processes 3D texture positions where each position represents a texel containing 4 width-packed integer components. For each texel at position `pos`, it calculates a base tensor index `base_tidx = ivec4(pos.x * 4, pos.y, pos.z, 0)` to account for width-packing. For each of the 4 components in the texel, it computes the actual tensor coordinate: `tidx = ivec4(base_tidx.x + i, base_tidx.y, (foldedZ % C_total), (foldedZ / C_total))` where `foldedZ = pos.z` handles batch-channel folding in 4D tensors and `C_total = numBlocks.z * blockSize.z` represents the total channel dimension. The block coordinate is calculated using integer division: `bcoord = tidx / blockSize`, then the linear block ID uses pre-computed strides: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. Each integer component is dequantized using its corresponding block's parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` where `dequantize_val()` applies the formula `(qvalue - zero_point) * scale`. The reconstructed floating-point values are written to the output texel with proper type handling for double precision outputs. ## Buffer Storage Implementation (`dequantize_buffer.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on buffer element count - **Local WG Size**: Default sizing without special constraints **Block-wise Mode Algorithm**: The shader processes linear buffer indices using `gl_GlobalInvocationID.x` as the output buffer index. It converts this to tensor coordinates using `bufi_to_tidx(out_bufi, t_out_strides, out_dim_order)` which handles the buffer-to-tensor index mapping with proper stride calculations. For each element, it computes the block coordinate directly: `bcoord = out_tidx / blockSize` where `out_tidx` is the 4D tensor coordinate in WHCN layout. The linear block ID calculation uses the same pre-computed stride approach: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. The quantized integer value is loaded using the corresponding input buffer index: `qvalue = t_in[in_bufi]` where `in_bufi = tidx_to_bufi(out_tidx, t_in_strides)`. Dequantization applies the block-specific parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` to reconstruct the original floating-point value. **Future Improvements**: Dynamic workgroup sizing based on block dimensions Differential Revision: [D78435552](https://our.internmc.facebook.com/intern/diff/D78435552/) cc SS-JIA manuelcandales cbilgin [ghstack-poisoned]
This pull request was exported from Phabricator. Differential Revision: D78435552 |
…der and cleanup" # Changes * Implement `torchao.dequantize_affine` operator in Vulkan backend with comprehensive texture and buffer storage support * Add block-wise dequantization mode in `dequantize_texture.glsl` and `dequantize_buffer.glsl` shaders for configurable tensor block dequantization * Extend dequantization infrastructure in `Dequantize.cpp` to handle affine transformations with configurable block sizes and quantization parameters * Support integer-to-floating-point conversion with precise reconstruction of original values BE: Improved the documentation in the shader logic which is more detailed and clear # Motivation The existing Vulkan quantization infrastructure lacked support for the `torchao.dequantize_affine` operator, which is essential for completing the quantization-dequantization cycle in dynamic quantization workflows. The `dequantize_affine` operator provides flexible block-wise dequantization that reconstructs floating-point values from quantized integer blocks, enabling: * **Block-wise Dequantization**: Reconstructs floating-point values from configurable tensor blocks using separate scale and zero-point parameters, enabling precise recovery of original data distributions * **Affine Transformation**: Uses the formula `value = (qvalue - zero_point) * scale` for accurate integer-to-floating-point mapping * **TorchAO Integration**: Seamless compatibility with TorchAO quantization workflows and completes the quantization-dequantization round-trip # Operator Description The `dequantize_affine` operator converts n-bit integer tensor values back to floating-point representations using pre-computed quantization parameters (scale and zero_point) applied to configurable tensor blocks. Block-wise dequantization divides tensors into blocks and applies separate dequantization parameters to each block, allowing fine-grained reconstruction of the original floating-point precision. The dequantization formula is: `value = (qvalue - zero_point) * scale` **Storage Requirements**: Scale and zero_point tensors must use buffer storage with width-packed layout. Input/output tensors support both buffer and texture storage with standard axis mapping. Input tensors must be integer types (kByte, kChar, kInt). # Block-wise Dequantization Implementation Block-wise dequantization enables fine-grained reconstruction by dividing tensors into blocks and applying separate dequantization parameters to each block. The implementation uses the same key data structures computed in `Dequantize.cpp`: * **`block_size_vec`**: WHCN-ordered block dimensions converted from PyTorch NCHW layout (e.g., [3,3,2,1] for 3×3×2×1 blocks) * **`tensor_size_whcn`**: Input tensor dimensions converted to WHCN layout using `utils::make_whcn_ivec4()` * **`num_blocks_vec`**: Number of blocks per dimension calculated as `tensor_size_whcn / block_size_vec` * **`block_stride_vec`**: Pre-computed linear strides for block grid indexing `{1, #W, #W*#H, #W*#H*#C}` to enable efficient block ID calculation The block coordinate calculation uses: `bcoord = tidx / blockSize` where `tidx` is the tensor coordinate in WHCN layout, then the linear block ID is computed as: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w` # Shader Algorithm Overview ## Texture Storage Implementation (`dequantize_texture.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on texture dimensions - **Local WG Size**: Default with special handling for batch dimension dequantization (Z dimension set to 1 for proper workgroup dispatching when `global_workgroup_size[2] > 1`) **Block-wise Mode Algorithm**: The shader processes 3D texture positions where each position represents a texel containing 4 width-packed integer components. For each texel at position `pos`, it calculates a base tensor index `base_tidx = ivec4(pos.x * 4, pos.y, pos.z, 0)` to account for width-packing. For each of the 4 components in the texel, it computes the actual tensor coordinate: `tidx = ivec4(base_tidx.x + i, base_tidx.y, (foldedZ % C_total), (foldedZ / C_total))` where `foldedZ = pos.z` handles batch-channel folding in 4D tensors and `C_total = numBlocks.z * blockSize.z` represents the total channel dimension. The block coordinate is calculated using integer division: `bcoord = tidx / blockSize`, then the linear block ID uses pre-computed strides: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. Each integer component is dequantized using its corresponding block's parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` where `dequantize_val()` applies the formula `(qvalue - zero_point) * scale`. The reconstructed floating-point values are written to the output texel with proper type handling for double precision outputs. ## Buffer Storage Implementation (`dequantize_buffer.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on buffer element count - **Local WG Size**: Default sizing without special constraints **Block-wise Mode Algorithm**: The shader processes linear buffer indices using `gl_GlobalInvocationID.x` as the output buffer index. It converts this to tensor coordinates using `bufi_to_tidx(out_bufi, t_out_strides, out_dim_order)` which handles the buffer-to-tensor index mapping with proper stride calculations. For each element, it computes the block coordinate directly: `bcoord = out_tidx / blockSize` where `out_tidx` is the 4D tensor coordinate in WHCN layout. The linear block ID calculation uses the same pre-computed stride approach: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. The quantized integer value is loaded using the corresponding input buffer index: `qvalue = t_in[in_bufi]` where `in_bufi = tidx_to_bufi(out_tidx, t_in_strides)`. Dequantization applies the block-specific parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` to reconstruct the original floating-point value. **Future Improvements**: Dynamic workgroup sizing based on block dimensions Differential Revision: [D78435552](https://our.internmc.facebook.com/intern/diff/D78435552/) cc SS-JIA manuelcandales cbilgin [ghstack-poisoned]
This pull request was exported from Phabricator. Differential Revision: D78435552 |
…der and cleanup" # Changes * Implement `torchao.dequantize_affine` operator in Vulkan backend with comprehensive texture and buffer storage support * Add block-wise dequantization mode in `dequantize_texture.glsl` and `dequantize_buffer.glsl` shaders for configurable tensor block dequantization * Extend dequantization infrastructure in `Dequantize.cpp` to handle affine transformations with configurable block sizes and quantization parameters * Support integer-to-floating-point conversion with precise reconstruction of original values BE: Improved the documentation in the shader logic which is more detailed and clear # Motivation The existing Vulkan quantization infrastructure lacked support for the `torchao.dequantize_affine` operator, which is essential for completing the quantization-dequantization cycle in dynamic quantization workflows. The `dequantize_affine` operator provides flexible block-wise dequantization that reconstructs floating-point values from quantized integer blocks, enabling: * **Block-wise Dequantization**: Reconstructs floating-point values from configurable tensor blocks using separate scale and zero-point parameters, enabling precise recovery of original data distributions * **Affine Transformation**: Uses the formula `value = (qvalue - zero_point) * scale` for accurate integer-to-floating-point mapping * **TorchAO Integration**: Seamless compatibility with TorchAO quantization workflows and completes the quantization-dequantization round-trip # Operator Description The `dequantize_affine` operator converts n-bit integer tensor values back to floating-point representations using pre-computed quantization parameters (scale and zero_point) applied to configurable tensor blocks. Block-wise dequantization divides tensors into blocks and applies separate dequantization parameters to each block, allowing fine-grained reconstruction of the original floating-point precision. The dequantization formula is: `value = (qvalue - zero_point) * scale` **Storage Requirements**: Scale and zero_point tensors must use buffer storage with width-packed layout. Input/output tensors support both buffer and texture storage with standard axis mapping. Input tensors must be integer types (kByte, kChar, kInt). # Block-wise Dequantization Implementation Block-wise dequantization enables fine-grained reconstruction by dividing tensors into blocks and applying separate dequantization parameters to each block. The implementation uses the same key data structures computed in `Dequantize.cpp`: * **`block_size_vec`**: WHCN-ordered block dimensions converted from PyTorch NCHW layout (e.g., [3,3,2,1] for 3×3×2×1 blocks) * **`tensor_size_whcn`**: Input tensor dimensions converted to WHCN layout using `utils::make_whcn_ivec4()` * **`num_blocks_vec`**: Number of blocks per dimension calculated as `tensor_size_whcn / block_size_vec` * **`block_stride_vec`**: Pre-computed linear strides for block grid indexing `{1, #W, #W*#H, #W*#H*#C}` to enable efficient block ID calculation The block coordinate calculation uses: `bcoord = tidx / blockSize` where `tidx` is the tensor coordinate in WHCN layout, then the linear block ID is computed as: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w` # Shader Algorithm Overview ## Texture Storage Implementation (`dequantize_texture.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on texture dimensions - **Local WG Size**: Default with special handling for batch dimension dequantization (Z dimension set to 1 for proper workgroup dispatching when `global_workgroup_size[2] > 1`) **Block-wise Mode Algorithm**: The shader processes 3D texture positions where each position represents a texel containing 4 width-packed integer components. For each texel at position `pos`, it calculates a base tensor index `base_tidx = ivec4(pos.x * 4, pos.y, pos.z, 0)` to account for width-packing. For each of the 4 components in the texel, it computes the actual tensor coordinate: `tidx = ivec4(base_tidx.x + i, base_tidx.y, (foldedZ % C_total), (foldedZ / C_total))` where `foldedZ = pos.z` handles batch-channel folding in 4D tensors and `C_total = numBlocks.z * blockSize.z` represents the total channel dimension. The block coordinate is calculated using integer division: `bcoord = tidx / blockSize`, then the linear block ID uses pre-computed strides: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. Each integer component is dequantized using its corresponding block's parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` where `dequantize_val()` applies the formula `(qvalue - zero_point) * scale`. The reconstructed floating-point values are written to the output texel with proper type handling for double precision outputs. ## Buffer Storage Implementation (`dequantize_buffer.glsl`) **Workgroup Configuration**: - **Global WG Size**: Default sizing based on buffer element count - **Local WG Size**: Default sizing without special constraints **Block-wise Mode Algorithm**: The shader processes linear buffer indices using `gl_GlobalInvocationID.x` as the output buffer index. It converts this to tensor coordinates using `bufi_to_tidx(out_bufi, t_out_strides, out_dim_order)` which handles the buffer-to-tensor index mapping with proper stride calculations. For each element, it computes the block coordinate directly: `bcoord = out_tidx / blockSize` where `out_tidx` is the 4D tensor coordinate in WHCN layout. The linear block ID calculation uses the same pre-computed stride approach: `block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w`. The quantized integer value is loaded using the corresponding input buffer index: `qvalue = t_in[in_bufi]` where `in_bufi = tidx_to_bufi(out_tidx, t_in_strides)`. Dequantization applies the block-specific parameters: `value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])` to reconstruct the original floating-point value. **Future Improvements**: Dynamic workgroup sizing based on block dimensions Differential Revision: [D78435552](https://our.internmc.facebook.com/intern/diff/D78435552/) cc SS-JIA manuelcandales cbilgin [ghstack-poisoned]
This pull request was exported from Phabricator. Differential Revision: D78435552 |
9ba0d5e
into
gh/ahmtox/44/base
…anup (#13002) This PR was created by the merge bot to help merge the original PR into the main branch. ghstack PR number: #12576 by @ahmtox ^ Please use this as the source of truth for the PR details, comments, and reviews ghstack PR base: https://github.com/pytorch/executorch/tree/gh/ahmtox/44/base ghstack PR head: https://github.com/pytorch/executorch/tree/gh/ahmtox/44/head Merge bot PR base: https://github.com/pytorch/executorch/tree/gh/ahmtox/43/orig Merge bot PR head: https://github.com/pytorch/executorch/tree/gh/ahmtox/44/orig @diff-train-skip-merge cc @SS-JIA @manuelcandales @cbilgin Co-authored-by: morelos <morelos@devvm4573.ash0.facebook.com> Co-authored-by: ahmtox <69552192+ahmtox@users.noreply.github.com>
Stack from ghstack (oldest at bottom):
Changes
torchao.dequantize_affine
operator in Vulkan backend with comprehensive texture and buffer storage supportdequantize_texture.glsl
anddequantize_buffer.glsl
shaders for configurable tensor block dequantizationDequantize.cpp
to handle affine transformations with configurable block sizes and quantization parametersBE: Improved the documentation in the shader logic which is more detailed and clear
Motivation
The existing Vulkan quantization infrastructure lacked support for the
torchao.dequantize_affine
operator, which is essential for completing the quantization-dequantization cycle in dynamic quantization workflows. Thedequantize_affine
operator provides flexible block-wise dequantization that reconstructs floating-point values from quantized integer blocks, enabling:value = (qvalue - zero_point) * scale
for accurate integer-to-floating-point mappingOperator Description
The
dequantize_affine
operator converts n-bit integer tensor values back to floating-point representations using pre-computed quantization parameters (scale and zero_point) applied to configurable tensor blocks. Block-wise dequantization divides tensors into blocks and applies separate dequantization parameters to each block, allowing fine-grained reconstruction of the original floating-point precision.The dequantization formula is:
value = (qvalue - zero_point) * scale
Storage Requirements: Scale and zero_point tensors must use buffer storage with width-packed layout. Input/output tensors support both buffer and texture storage with standard axis mapping. Input tensors must be integer types (kByte, kChar, kInt).
Block-wise Dequantization Implementation
Block-wise dequantization enables fine-grained reconstruction by dividing tensors into blocks and applying separate dequantization parameters to each block. The implementation uses the same key data structures computed in
Dequantize.cpp
:block_size_vec
: WHCN-ordered block dimensions converted from PyTorch NCHW layout (e.g., [3,3,2,1] for 3×3×2×1 blocks)tensor_size_whcn
: Input tensor dimensions converted to WHCN layout usingutils::make_whcn_ivec4()
num_blocks_vec
: Number of blocks per dimension calculated astensor_size_whcn / block_size_vec
block_stride_vec
: Pre-computed linear strides for block grid indexing{1, #W, #W*#H, #W*#H*#C}
to enable efficient block ID calculationThe block coordinate calculation uses:
bcoord = tidx / blockSize
wheretidx
is the tensor coordinate in WHCN layout, then the linear block ID is computed as:block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w
Shader Algorithm Overview
Texture Storage Implementation (
dequantize_texture.glsl
)Workgroup Configuration:
global_workgroup_size[2] > 1
)Block-wise Mode Algorithm:
The shader processes 3D texture positions where each position represents a texel containing 4 width-packed integer components. For each texel at position
pos
, it calculates a base tensor indexbase_tidx = ivec4(pos.x * 4, pos.y, pos.z, 0)
to account for width-packing.For each of the 4 components in the texel, it computes the actual tensor coordinate:
tidx = ivec4(base_tidx.x + i, base_tidx.y, (foldedZ % C_total), (foldedZ / C_total))
wherefoldedZ = pos.z
handles batch-channel folding in 4D tensors andC_total = numBlocks.z * blockSize.z
represents the total channel dimension.The block coordinate is calculated using integer division:
bcoord = tidx / blockSize
, then the linear block ID uses pre-computed strides:block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w
.Each integer component is dequantized using its corresponding block's parameters:
value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])
wheredequantize_val()
applies the formula(qvalue - zero_point) * scale
. The reconstructed floating-point values are written to the output texel with proper type handling for double precision outputs.Buffer Storage Implementation (
dequantize_buffer.glsl
)Workgroup Configuration:
Block-wise Mode Algorithm:
The shader processes linear buffer indices using
gl_GlobalInvocationID.x
as the output buffer index. It converts this to tensor coordinates usingbufi_to_tidx(out_bufi, t_out_strides, out_dim_order)
which handles the buffer-to-tensor index mapping with proper stride calculations.For each element, it computes the block coordinate directly:
bcoord = out_tidx / blockSize
whereout_tidx
is the 4D tensor coordinate in WHCN layout. The linear block ID calculation uses the same pre-computed stride approach:block_id = bcoord.x * blockStride.x + bcoord.y * blockStride.y + bcoord.z * blockStride.z + bcoord.w * blockStride.w
.The quantized integer value is loaded using the corresponding input buffer index:
qvalue = t_in[in_bufi]
wherein_bufi = tidx_to_bufi(out_tidx, t_in_strides)
. Dequantization applies the block-specific parameters:value = dequantize_val(qvalue, t_scale[block_id], t_zero_point[block_id])
to reconstruct the original floating-point value.Future Improvements: Dynamic workgroup sizing based on block dimensions
Differential Revision: D78435552
cc @SS-JIA @manuelcandales @cbilgin