Skip to content

[ET-VK][Ops] choose_qparams.tensor test setup #11679

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Open
wants to merge 2 commits into
base: gh/ahmtox/19/orig
Choose a base branch
from
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
274 changes: 274 additions & 0 deletions backends/vulkan/test/op_tests/choose_qparams_test.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -114,3 +114,277 @@ std::tuple<at::Tensor, at::Tensor> choose_qparams_per_token_asymmetric_aten(
} // namespace native
} // namespace executor
} // namespace torch

//
// Reference Implementation
//

/*
* Reference implementation of choose_qparams_tensor
*/
std::tuple<at::Tensor, at::Tensor> choose_qparams_tensor_reference_impl(
const at::Tensor& input,
int64_t quant_min,
int64_t quant_max) {
// Create output tensors
at::Tensor scale_out = at::empty({}, at::device(at::kCPU).dtype(at::kDouble));
at::Tensor zero_point_out =
at::empty({}, at::device(at::kCPU).dtype(at::kLong));

// Find min and max values in the input tensor
float min_val = input.min().item<float>();
float max_val = input.max().item<float>();

// Extend the [min, max] interval to ensure it contains 0
min_val = std::min(min_val, 0.f);
max_val = std::max(max_val, 0.f);

// Calculate scale
double scale =
(static_cast<double>(max_val) - min_val) / (quant_max - quant_min);

// Handle small scale
constexpr float SMALL_SCALE_THRESHOLD = 6.1e-5f;
if (float(scale) == 0.0f || std::isinf(1.0f / float(scale))) {
scale = 0.1;
}

if (scale < SMALL_SCALE_THRESHOLD) {
float org_scale = scale;
scale = SMALL_SCALE_THRESHOLD;
// Adjust min and max based on new scale
if (min_val == 0.0f) {
max_val = SMALL_SCALE_THRESHOLD * (quant_max - quant_min);
} else if (max_val == 0.0f) {
min_val = -SMALL_SCALE_THRESHOLD * (quant_max - quant_min);
} else {
float amplifier = SMALL_SCALE_THRESHOLD / org_scale;
min_val *= amplifier;
max_val *= amplifier;
}
}

// Calculate zero point
double zero_point_from_min = quant_min - min_val / static_cast<double>(scale);
double zero_point_from_max = quant_max - max_val / static_cast<double>(scale);
double zero_point_from_min_error =
std::abs(quant_min) - std::abs(min_val / static_cast<double>(scale));
double zero_point_from_max_error =
std::abs(quant_max) - std::abs(max_val / static_cast<double>(scale));
double initial_zero_point =
zero_point_from_min_error < zero_point_from_max_error
? zero_point_from_min
: zero_point_from_max;

// Nudge zero point to be an integer
int64_t nudged_zero_point = 0;
if (initial_zero_point < quant_min) {
nudged_zero_point = quant_min;
} else if (initial_zero_point > quant_max) {
nudged_zero_point = quant_max;
} else {
nudged_zero_point = std::nearbyint(static_cast<float>(initial_zero_point));
}

// Set output values - use item_mutable() for scalar tensors
scale_out.fill_(scale);
zero_point_out.fill_(nudged_zero_point);

return std::make_tuple(scale_out, zero_point_out);
}

// Forward declaration of implementation functions
void test_vulkan_choose_qparams_tensor_impl(
const std::vector<int>& input_sizes,
int64_t quant_min,
int64_t quant_max,
at::ScalarType dtype,
const vkcompute::utils::StorageType in_storage,
const vkcompute::utils::StorageType out_storage);

// Wrapper function to test both buffer and texture storage types
void test_vulkan_choose_qparams_tensor(
const std::vector<int>& input_sizes,
int64_t quant_min,
int64_t quant_max,
at::ScalarType dtype) {
// Test with buffer storage
test_vulkan_choose_qparams_tensor_impl(
input_sizes,
quant_min,
quant_max,
dtype,
vkcompute::utils::kBuffer,
vkcompute::utils::kBuffer);

// Test with texture storage
test_vulkan_choose_qparams_tensor_impl(
input_sizes,
quant_min,
quant_max,
dtype,
vkcompute::utils::kTexture3D,
vkcompute::utils::kTexture3D);
}

void test_reference_choose_qparams_tensor(
const std::vector<int>& input_sizes,
int64_t quant_min,
int64_t quant_max,
at::ScalarType dtype) {
std::vector<int64_t> input_sizes_int64(
input_sizes.begin(), input_sizes.end());
at::Tensor input =
at::rand(input_sizes_int64, at::device(at::kCPU).dtype(at::kFloat));

// Get reference output
auto [reference_scale, reference_zero_point] =
choose_qparams_tensor_reference_impl(input, quant_min, quant_max);

// Get implementation output
auto [impl_scale, impl_zero_point] =
torch::executor::native::choose_qparams_tensor_aten(
input, quant_min, quant_max, dtype);

// Compare outputs
const bool scale_correct = at::allclose(reference_scale, impl_scale);
const bool zero_point_correct =
at::equal(reference_zero_point, impl_zero_point);

if (!scale_correct || !zero_point_correct) {
std::cout << "\n"
<< "Failed with parameters: " << std::endl;
std::cout << " quant_min: " << quant_min << std::endl;
std::cout << " quant_max: " << quant_max << std::endl;

std::cout << "input:" << std::endl;
std::cout << input << std::endl;
std::cout << "reference scale:" << std::endl;
std::cout << reference_scale << std::endl;
std::cout << "implementation scale:" << std::endl;
std::cout << impl_scale << std::endl;
std::cout << "reference zero_point:" << std::endl;
std::cout << reference_zero_point << std::endl;
std::cout << "implementation zero_point:" << std::endl;
std::cout << impl_zero_point << std::endl;
}

ASSERT_TRUE(scale_correct && zero_point_correct);
}

void test_vulkan_choose_qparams_tensor_impl(
const std::vector<int>& input_sizes,
int64_t quant_min,
int64_t quant_max,
at::ScalarType dtype,
const vkcompute::utils::StorageType in_storage,
const vkcompute::utils::StorageType out_storage) {
std::vector<int64_t> input_sizes_int64(
input_sizes.begin(), input_sizes.end());
at::Tensor input =
at::rand(input_sizes_int64, at::device(at::kCPU).dtype(at::kFloat));

// Get reference output
auto [reference_scale, reference_zero_point] =
torch::executor::native::choose_qparams_tensor_aten(
input, quant_min, quant_max, dtype);

// Build Vulkan choose_qparams_tensor graph
using namespace vkcompute;

GraphConfig config;
config.set_storage_type_override(in_storage);
ComputeGraph graph(config);

IOValueRef r_input = graph.add_input_tensor(
input.sizes().vec(), from_at_scalartype(input.scalar_type()), in_storage);

const ValueRef r_quant_min = graph.add_scalar<int64_t>(quant_min);
const ValueRef r_quant_max = graph.add_scalar<int64_t>(quant_max);

// Output tensors
const ValueRef r_scale = graph.add_tensor({}, vkapi::kFloat, out_storage);
const ValueRef r_zero_point = graph.add_tensor({}, vkapi::kInt, out_storage);

VK_GET_OP_FN("choose_qparams.tensor")
(graph,
{
r_input.value,
r_quant_min,
r_quant_max,
r_scale,
r_zero_point,
});

ValueRef staging_scale = graph.set_output_tensor(r_scale);
ValueRef staging_zero_point = graph.set_output_tensor(r_zero_point);

graph.prepare();
graph.encode_prepack();
graph.prepack();
graph.encode_execute();

// Run Vulkan choose_qparams_tensor
graph.copy_into_staging(
r_input.staging, input.const_data_ptr(), input.numel());

graph.execute();

// Create output tensors to hold the results - use types that match GPU output
at::Tensor vk_scale =
at::empty({}, at::device(at::kCPU).dtype(at::kFloat)).contiguous();
at::Tensor vk_zero_point =
at::empty({}, at::device(at::kCPU).dtype(at::kInt)).contiguous();

// Copy results from GPU to CPU
graph.copy_from_staging(
staging_scale, vk_scale.mutable_data_ptr(), vk_scale.numel());
graph.copy_from_staging(
staging_zero_point,
vk_zero_point.mutable_data_ptr(),
vk_zero_point.numel());

// Convert reference values to match Vulkan output types for comparison
at::Tensor reference_scale_float = reference_scale.to(at::kFloat);
at::Tensor reference_zero_point_int = reference_zero_point.to(at::kInt);

// Compare outputs
const bool scale_correct = at::allclose(reference_scale_float, vk_scale);
const bool zero_point_correct =
at::equal(reference_zero_point_int, vk_zero_point);

if (!scale_correct || !zero_point_correct) {
std::cout << "\n"
<< "Failed with parameters: " << std::endl;
std::cout << " quant_min: " << quant_min << std::endl;
std::cout << " quant_max: " << quant_max << std::endl;
std::cout << " storage type: "
<< (in_storage == vkcompute::utils::kBuffer ? "buffer"
: "texture")
<< std::endl;

// make sure that there arent a ton of elements in the input tensor
if (input.numel() < 100) {
std::cout << "input:" << std::endl;
std::cout << input << "\n" << std::endl;
std::cout << "reference scale:" << std::endl;
std::cout << reference_scale << std::endl;
std::cout << "vulkan scale:" << std::endl;
std::cout << vk_scale << "\n" << std::endl;
std::cout << "reference zero_point:" << std::endl;
std::cout << reference_zero_point << std::endl;
std::cout << "vulkan zero_point:" << std::endl;
std::cout << vk_zero_point << std::endl;
}
}

ASSERT_TRUE(scale_correct && zero_point_correct);
}

TEST(VulkanChooseQparamsTest, test_reference_choose_qparams_tensor_int8) {
test_reference_choose_qparams_tensor(
{2, 3, 4}, // input sizes
-128, // quant_min
127, // quant_max
at::kChar);
}
Loading