Skip to content

[moe training] Add TP support for routed experts #2473

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 1 commit into from
Jul 2, 2025
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
33 changes: 2 additions & 31 deletions test/prototype/moe_training/test_fsdp.py
Original file line number Diff line number Diff line change
Expand Up @@ -16,9 +16,10 @@

from torchao.float8.float8_utils import compute_error
from torchao.prototype.moe_training.conversion_utils import MoETrainingConfig
from torchao.prototype.moe_training.tensor import ScaledGroupedMMTensor
from torchao.quantization.quant_api import quantize_

from .testing_utils import _validate_model_conversion

# this test requires torchtitan
try:
from torchtitan.experiments.llama4.model.args import TransformerModelArgs
Expand Down Expand Up @@ -119,36 +120,6 @@ def moe_module_filter_fn(mod: nn.Module, cur_fqn: str) -> bool:
dist.destroy_process_group()


def _validate_model_conversion(
root_module: nn.Module,
target_fqns: list[str],
):
def _recursive_validate(
module: nn.Module,
cur_fqn: str,
):
is_allowed_module = cur_fqn in target_fqns

# check current module params
for param_name, param in module.named_parameters(recurse=False):
is_converted_type = isinstance(param, ScaledGroupedMMTensor)
if is_converted_type:
assert is_allowed_module, (
f"Module {cur_fqn} is not in target_fqns, but has converted param {param_name}."
)
if not is_allowed_module:
assert not is_converted_type, (
f"Module {cur_fqn} is not in target_fqns, but has converted param {param_name}."
)

# recursively check child modules
for child_name, child_module in module.named_children():
child_fqn = f"{cur_fqn}.{child_name}" if cur_fqn else child_name
_recursive_validate(child_module, child_fqn)

_recursive_validate(root_module, "")


def setup_distributed():
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
Expand Down
2 changes: 1 addition & 1 deletion test/prototype/moe_training/test_fsdp.sh
Original file line number Diff line number Diff line change
@@ -1 +1 @@
torchrun --nproc_per_node=2 --local-ranks-filter=0 -m pytest test/prototype/moe_training/test_fsdp.py
torchrun --nproc_per_node=2 --local-ranks-filter=0 -m pytest test/prototype/moe_training/test_fsdp.py -s
245 changes: 245 additions & 0 deletions test/prototype/moe_training/test_tp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,245 @@
# Copyright (c) Meta Platforms, Inc. and affiliates.
# All rights reserved.
#
# This source code is licensed under the BSD 3-Clause license found in the
# LICENSE file in the root directory of this source tree.
######################################################################
#
# To run these unit tests, use the following command:
#
# torchrun --nproc_per_node=${NUM_GPUS} -m pytest test_tp.py
#
#######################################################################

import copy
import os

import pytest
import torch
from torch import distributed as dist
from torch import nn
from torch.distributed._tensor import DTensor
from torch.distributed.device_mesh import DeviceMesh, init_device_mesh
from torch.distributed.tensor import Partial, Replicate, Shard
from torch.nn import functional as F

try:
from torch.distributed.tensor.parallel import (
PrepareModuleInputOutput,
parallelize_module,
)
except ImportError:
import warnings

warnings.warn(
"torch version is too old, these tests require nightly build. Skipping MoE training tests."
)
pytest.skip(allow_module_level=True)


# this feature requires CUDA and SM89+
if not torch.cuda.is_available() or torch.cuda.get_device_capability() < (8, 9):
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

is the bf16 group gemm working on A100? If yes, I would vote for adding an emulation mode and running this test in emulation mode. We do this for float8 and MX training.

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I will look into this and add emulation if bf16 grouped gemm builds on a100

pytest.skip(
"CUDA not available or compute capability < 8.9", allow_module_level=True
)

from torchao.float8.float8_utils import compute_error
from torchao.prototype.moe_training.conversion_utils import MoETrainingConfig
from torchao.quantization.quant_api import quantize_

from .testing_utils import _validate_model_conversion

# this test requires torchtitan
try:
from torchtitan.experiments.llama4.infra.expert_parallel import (
ExpertParallel,
ExpertTensorParallel,
NoParallel,
TensorParallel,
)
from torchtitan.experiments.llama4.model.args import TransformerModelArgs
from torchtitan.experiments.llama4.model.moe import MoE
except ImportError:
import warnings

warnings.warn("torchtitan not installed, skipping MoE tests.")
pytest.skip(allow_module_level=True)


@pytest.mark.parametrize(
"target_fqns",
[
["experts"],
# TODO: investigate hang when shared_expert is converted
# ["experts,shared_expert"],
],
)
def test_moe_float8_training_tp(target_fqns: list[str]):
assert torch.cuda.is_available()

# setup distributed for tp
mesh = setup_distributed()

# define model args
model_args = TransformerModelArgs(
moe_enabled=True,
num_experts=8,
dim=256,
vocab_size=1024,
)
init_std = 0.02
device = torch.device("cuda")

# reference bf16 MoE
ref_model = MoE(model_args).to(torch.bfloat16).cuda()
torch.manual_seed(1)
ref_model.init_weights(init_std, device)

# target MoE for testing conversion
model = copy.deepcopy(ref_model)

# assert starting params are identical for both models
for param1, param2 in zip(model.parameters(), ref_model.parameters()):
assert torch.equal(param1, param2)

# convert MoE to float8 training
def moe_module_filter_fn(mod: nn.Module, cur_fqn: str) -> bool:
for target_fqn in target_fqns:
if target_fqn in cur_fqn:
return True
return False

# quantize test model
config = MoETrainingConfig()
quantize_(model, config=config, filter_fn=moe_module_filter_fn)

# validate that only the experts were converted
_validate_model_conversion(
model,
target_fqns=target_fqns,
)

# apply TP
apply_moe_ep_tp(model, tp_mesh=mesh, ep_mesh=None, ep_tp_mesh=None)
apply_moe_ep_tp(ref_model, tp_mesh=mesh, ep_mesh=None, ep_tp_mesh=None)

# Rough validation that parallelization was applied properly.
assert isinstance(model.experts.w1.data, DTensor), (
"test model experts.w1 is not a DTensor"
)
assert isinstance(model.experts.w2.data, DTensor), (
"test model experts.w2 is not a DTensor"
)
assert isinstance(model.experts.w3.data, DTensor), (
"test model experts.w3 is not a DTensor"
)
assert isinstance(ref_model.experts.w1.data, DTensor), (
"ref model experts.w1 is not a DTensor"
)
assert isinstance(ref_model.experts.w2.data, DTensor), (
"ref model experts.w2 is not a DTensor"
)
assert isinstance(ref_model.experts.w3.data, DTensor), (
"ref model experts.w3 is not a DTensor"
)

# inputs
batch, seq, dim = 8, 2048, 256
ref_x = torch.randn(
batch, seq, dim, dtype=torch.bfloat16, requires_grad=True, device=device
)
x = ref_x.detach().clone().requires_grad_(True)

# forward pass
ref_out = ref_model(ref_x)
out = model(x)

# validate output
out_sqnr = compute_error(out, ref_out)
assert out_sqnr.item() >= 30.0, f"SQNR must be >= 30.0, got {out_sqnr.item()}."

# compute loss
labels = torch.ones_like(ref_out)
ref_loss = F.mse_loss(ref_out, labels)
out_loss = F.mse_loss(out, labels)

# backward pass
ref_loss.backward()
out_loss.backward()

# validate input gradient
input_grad_sqnr = compute_error(x.grad, ref_x.grad)
assert input_grad_sqnr.item() >= 28.0, (
f"SQNR must be >= 28.0, got {input_grad_sqnr.item()}."
)

# validate param gradients
for param1, param2 in zip(model.parameters(), ref_model.parameters()):
param_grad_sqnr = compute_error(param1.grad, param2.grad)
assert param_grad_sqnr.item() >= 25.0, (
f"SQNR must be >= 25.0, got {param_grad_sqnr.item()}."
)

dist.destroy_process_group()


def setup_distributed():
rank = int(os.environ["RANK"])
world_size = int(os.environ["WORLD_SIZE"])
dist.init_process_group("nccl", rank=rank, world_size=world_size)
device_mesh = init_device_mesh("cuda", (world_size,))
# seed must be the same in all processes
torch.manual_seed(1)
torch.cuda.set_device(rank)
return device_mesh


def apply_moe_ep_tp(
model: nn.Module,
tp_mesh: DeviceMesh | None,
ep_mesh: DeviceMesh | None,
ep_tp_mesh: DeviceMesh | None,
):
# Modified version of moe parallelization from https://github.com/pytorch/torchtitan/pull/1324/
# that supports single MoE layer independent of a transformer.
if tp_mesh is not None:
moe_layer_plan = {
# input / output sharding on the seqlen dim
# all-gather for input, reduce-scatter for output
"moe": PrepareModuleInputOutput(
input_layouts=(Shard(1),),
desired_input_layouts=(Replicate(),),
use_local_input=True,
output_layouts=(Partial(),),
desired_output_layouts=(Shard(1),),
),
# replicate computation for the router
"moe.router.gate": NoParallel(),
# input Replicate, output Partial
"moe.shared_expert": TensorParallel(),
}
parallelize_module(
module=model,
device_mesh=tp_mesh,
parallelize_plan=moe_layer_plan,
)

# if ep_mesh is not None:
experts_mesh, experts_plan = None, None
if ep_mesh is None:
experts_mesh = tp_mesh
# input Replicate, output Partial
experts_plan = TensorParallel()
elif tp_mesh is None:
experts_mesh = ep_mesh
# input / output sharding on the batch / tokens dim
experts_plan = ExpertParallel()
else:
experts_mesh = ep_tp_mesh
experts_plan = ExpertTensorParallel(tp_mesh=tp_mesh, ep_mesh=ep_mesh)

parallelize_module(
module=model.experts,
device_mesh=experts_mesh,
parallelize_plan=experts_plan,
)
2 changes: 1 addition & 1 deletion test/prototype/moe_training/test_tp.sh
100644 → 100755
Original file line number Diff line number Diff line change
@@ -1 +1 @@
torchrun --nproc_per_node=2 -m pytest test/prototype/moe_training/test_tp.py
torchrun --nproc_per_node=2 --local-ranks-filter=0 -m pytest test/prototype/moe_training/test_tp.py -s
33 changes: 2 additions & 31 deletions test/prototype/moe_training/test_training.py
Original file line number Diff line number Diff line change
Expand Up @@ -13,9 +13,10 @@

from torchao.float8.float8_utils import compute_error
from torchao.prototype.moe_training.conversion_utils import MoETrainingConfig
from torchao.prototype.moe_training.tensor import ScaledGroupedMMTensor
from torchao.quantization.quant_api import quantize_

from .testing_utils import _validate_model_conversion

# this test requires torchtitan
try:
from torchtitan.experiments.llama4.model.args import TransformerModelArgs
Expand Down Expand Up @@ -108,33 +109,3 @@ def moe_module_filter_fn(mod: nn.Module, cur_fqn: str) -> bool:
assert param_grad_sqnr.item() >= 25.0, (
f"SQNR must be >= 25.0, got {param_grad_sqnr.item()}."
)


def _validate_model_conversion(
root_module: nn.Module,
target_fqns: list[str],
):
def _recursive_validate(
module: nn.Module,
cur_fqn: str,
):
is_allowed_module = cur_fqn in target_fqns

# check current module params
for param_name, param in module.named_parameters(recurse=False):
is_converted_type = isinstance(param, ScaledGroupedMMTensor)
if is_converted_type:
assert is_allowed_module, (
f"Module {cur_fqn} is not in target_fqns, but has converted param {param_name}."
)
if not is_allowed_module:
assert not is_converted_type, (
f"Module {cur_fqn} is not in target_fqns, but has converted param {param_name}."
)

# recursively check child modules
for child_name, child_module in module.named_children():
child_fqn = f"{cur_fqn}.{child_name}" if cur_fqn else child_name
_recursive_validate(child_module, child_fqn)

_recursive_validate(root_module, "")
33 changes: 33 additions & 0 deletions test/prototype/moe_training/testing_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
from torch import nn

from torchao.prototype.moe_training.tensor import ScaledGroupedMMTensor


def _validate_model_conversion(
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

nit: why do we need recursion to check this?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's just a generic way of checking all target FQNs were converted properly, and verifying all non-target FQNs were correctly not converted. It can easily be applied when we extend tests to other MoE models as well beyond just the torchtitan llama4 one I started with.

root_module: nn.Module,
target_fqns: list[str],
):
def _recursive_validate(
module: nn.Module,
cur_fqn: str,
):
is_allowed_module = any([target_fqn in cur_fqn for target_fqn in target_fqns])

# check current module params
for param_name, param in module.named_parameters(recurse=False):
is_converted_type = isinstance(param, ScaledGroupedMMTensor)
if is_converted_type:
assert is_allowed_module, (
f"Module {cur_fqn} is not in target_fqns, but has converted param {param_name}."
)
if not is_allowed_module:
assert not is_converted_type, (
f"Module {cur_fqn} is not in target_fqns, but has converted param {param_name}."
)

# recursively check child modules
for child_name, child_module in module.named_children():
child_fqn = f"{cur_fqn}.{child_name}" if cur_fqn else child_name
_recursive_validate(child_module, child_fqn)

_recursive_validate(root_module, "")
Loading
Loading