Skip to content

Visualisation: Allow specifying Agent shapes in agent_portrayal #2214

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 8 commits into from
Aug 21, 2024
Merged
Changes from 3 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
78 changes: 55 additions & 23 deletions mesa/visualization/components/matplotlib.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
from collections import defaultdict

import networkx as nx
import solara
from matplotlib.figure import Figure
Expand All @@ -23,12 +25,39 @@ def SpaceMatplotlib(model, agent_portrayal, dependencies: list[any] | None = Non
solara.FigureMatplotlib(space_fig, format="png", dependencies=dependencies)


# matplotlib scatter does not allow for multiple shapes in one call
def _split_and_scatter(portray_data, space_ax):
grouped_data = defaultdict(lambda: {"x": [], "y": [], "s": [], "c": []})

# Extract data from the dictionary
x = portray_data["x"]
y = portray_data["y"]
s = portray_data["s"]
c = portray_data["c"]
m = portray_data["m"]

assert len(x) == len(y) == len(s) == len(c) == len(m)

# Group the data by marker
for i in range(len(x)):
marker = m[i]
grouped_data[marker]["x"].append(x[i])
grouped_data[marker]["y"].append(y[i])
grouped_data[marker]["s"].append(s[i])
grouped_data[marker]["c"].append(c[i])

# Plot each group with the same marker
for marker, data in grouped_data.items():
space_ax.scatter(data["x"], data["y"], s=data["s"], c=data["c"], marker=marker)


def _draw_grid(space, space_ax, agent_portrayal):
def portray(g):
x = []
y = []
s = [] # size
c = [] # color
m = [] # shape
for i in range(g.width):
for j in range(g.height):
content = g._grid[i][j]
Expand All @@ -41,23 +70,23 @@ def portray(g):
data = agent_portrayal(agent)
x.append(i)
y.append(j)
if "size" in data:
s.append(data["size"])
if "color" in data:
c.append(data["color"])
out = {"x": x, "y": y}
# This is the default value for the marker size, which auto-scales
# according to the grid area.
out["s"] = (180 / max(g.width, g.height)) ** 2
if len(s) > 0:
out["s"] = s
if len(c) > 0:
out["c"] = c

# This is the default value for the marker size, which auto-scales
# according to the grid area.
default_size = (180 / max(g.width, g.height)) ** 2
# establishing a default prevents misalignment if some agents are not given size, color, etc.
size = data.get("size", default_size)
s.append(size)
color = data.get("color", "b")
c.append(color)
mark = data.get("shape", ".")
m.append(mark)
out = {"x": x, "y": y, "s": s, "c": c, "m": m}
return out

space_ax.set_xlim(-1, space.width)
space_ax.set_ylim(-1, space.height)
space_ax.scatter(**portray(space))
_split_and_scatter(portray(space), space_ax)


def _draw_network_grid(space, space_ax, agent_portrayal):
Expand All @@ -77,20 +106,23 @@ def portray(space):
y = []
s = [] # size
c = [] # color
m = [] # shape
for agent in space._agent_to_index:
data = agent_portrayal(agent)
_x, _y = agent.pos
x.append(_x)
y.append(_y)
if "size" in data:
s.append(data["size"])
if "color" in data:
c.append(data["color"])
out = {"x": x, "y": y}
if len(s) > 0:
out["s"] = s
if len(c) > 0:
out["c"] = c

# This is matplotlib's default marker size
default_size = 20
# establishing a default prevents misalignment if some agents are not given size, color, etc.
size = data.get("size", default_size)
s.append(size)
color = data.get("color", "b")
c.append(color)
mark = data.get("shape", ".")
m.append(mark)
out = {"x": x, "y": y, "s": s, "c": c, "m": m}
return out

# Determine border style based on space.torus
Expand All @@ -110,7 +142,7 @@ def portray(space):
space_ax.set_ylim(space.y_min - y_padding, space.y_max + y_padding)

# Portray and scatter the agents in the space
space_ax.scatter(**portray(space))
_split_and_scatter(portray(space), space_ax)


@solara.component
Expand Down