We introduce Infinigen-Stereo, a procedural dataset generator specifically optimized for zero-shot stereo matching performance. Using our generator, we create and release Infinigen-Stereo-150k, a new training dataset for stereo matching.
If you find Infinigen-Stereo useful for your work, please consider citing our academic paper:
David Yan,
Alexander Raistrick,
Jia Deng
@misc{yan2025proceduraldatasetgenerationzeroshot,
title={Procedural Dataset Generation for Zero-Shot Stereo Matching},
author={David Yan and Alexander Raistrick and Jia Deng},
year={2025},
eprint={2504.16930},
archivePrefix={arXiv},
primaryClass={cs.CV},
url={https://arxiv.org/abs/2504.16930},
}
Coming Soon!
Our dataset is now available on HuggingFace. You can download it with the command
pip install huggingface-cli
huggingface-cli download pvl-lab/InfinigenStereo --repo-type dataset
The dataset file structure is as follows:
.
└── InfinigenStereo/
├── indoor/
│ └── seed_num/
│ └── frames/
│ ├── Image/
│ │ ├── camera_0
│ │ └── camera_1
│ ├── camview/
│ │ ├── camera_0
│ │ └── camera_1
│ ├── disparity/
│ │ └── camera_0
│ ├── occ_mask/
│ │ └── camera_0
│ └── sky_mask/
│ └── camera_0
├── flying/
│ └── ...
└── nature/
└── ...
Camera 0 and 1 correspond to left and right camera frames, respectively.
We provide disparity, occlusion, sky-region masks for the left camera.
camview
contains .npz
files that contain a dictionary with indices K
, T
, HW
, corresponding to calibration, translation, and resolution matrices.