This project allows you to upload or capture satellite images, run segmentation predictions using YOLOv11, UNet, and Mask R-CNN models, and visualize each segmented class with corresponding area calculations.
![]() |
![]() |
![]() |
- 📤 Upload custom images or 🗺️ capture from live map view
- 🧠 Predict segmentation masks using deep learning models
- 🖼️ Split output into 6 individual class-wise images:
- Buildings 🏢
- Hills ⛰️
- Land 🌾
- Road 🛣️
- Vegetation 🌳
- Water 🌊
- 📏 Calculate and display the pixel area covered by each class
- Clone the repository
git clone https://github.com/praveensunkara19/SatelliteSeg-Yolo-Unet-MaskRcnn.git
cd SatelliteSeg-Yolo-Unet-MaskRcnn
2. Set up a virtual environment (optional but recommended)
python -m venv myenv
myenv\Scripts\activate # On Windows
#or
source myenv/bin/activate # On macOS/Linux
3. Install dependencies
pip install -r requirements.txt
4.▶️ How to Run
py app.py
📂 Folder Structure
SatelliteSeg-Yolo-Unet-MaskRcnn/
├── app.py # Main Gradio app
├── utils/ # Helper scripts and predictors
├── models/ # Model weights (.pt, .h5, etc.)
├── assets/ # Visual assets (optional)
├── config.py # Class labels and config
├── requirements.txt # Dependencies
├── .gitignore
├── LICENSE
└── README.md
📄 License This project is licensed under the MIT License – see the LICENSE file for details.
🙌 Acknowledgments Ultralytics YOLO Detectron2 by Facebook Research Gradio for the UI Esri Satellite Maps for live map tiles
Author @praveensunkara19