Skip to content

poppinace/tasselnetv3

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

TasselNetV3

by Hao Lu

Installation

The code has been tested on Python 3.7.4 and PyTorch 1.2.0. Please follow the official instructions to configure your environment. See other required packages in requirements.txt.

Prepare Your Data

Maize Tassels Counting

  • Download the Maize Tassels Counting (MTC) dataset from: BaiduYun (1.64 GB) (code: m8rj) or Google Drive (1.8 GB)
  • Unzip the dataset and move it into the ./data folder, the path structure should look like this:
$./data/maize_tassels_counting_dataset
├──── trainval
│    ├──── images
│    └──── labels
├──── test
│    ├──── images
│    └──── labels
├──── train.txt
├──── test.txt

Training

Run the following command to train TasselNetv2+ on the MTC dataset:

python --cfg config/mtc-tasselnetv2plus.yaml
  • Setting VAL.evaluate_only=False and VAL.visualization=False
  • Use CUDA_VISIBLE_DEVICES trick if you have multiple GPUs

Tips and Tricks

If you find some useful tricks and tips, please share it here.

  • (Hao Lu) Do not fix bn when training with pretrained models (batch_size=16 tested)
  • (Hao Lu) Scale the ground truth by x10 for density-map-based methods when L2 Loss is used (reduction='mean')

Inference

Once the training is finished, run the same command above with VAL.evaluate_only=True for inference.

  • Setting VAL.visualization=True to output visualizations. Visualizations are saved in the path ./results/<dataset>/<exp>/<epoch>.

Benchmark Results

Plant Counting

Maize Tassels Counting

Method Venue, Year Pretrained #Param. MAE MSE rMAE R2 Model
CSRNet CVPR 2018 VGG16 16.3M 9.43 14.43 100.65 0.7573 One Drive (116MB)
TasselNetv2 PLME 2019 No 525K 5.42 9.21 31.94 0.8923 Baidu Yun (2MB) (code: hrhi)
TasselNetv2+ TBD No 262K 5.41 9.31 37.65 0.8937 Baidu Yun (2MB) (code: hbnx)
BCNet-BN TCSVT 2019 VGG16 14.8M 5.11 9.58 27.84 0.8749 Baidu Yun (105MB) (code: mnys)

Maize Tassels Counting (UAV)

Method Venue, Year Resolution Pretrained #Param. MAE MSE rMAE R2 Model
TasselNetv2+ TBD 1/8 No 262K 27.08 38.38 14.61 0.8958 -
TasselNetv2+ TBD 1/4 No 262K 16.43 25.79 9.67 0.9515 Baidu Yun (2MB) (code: 68dn)
CSRNet CVPR 2018 1/4 VGG16 16.3M 14.38 20.52 9.56 0.9704 One Drive (116MB)
BCNet-BN TCSVT 2019 1/4 VGG16 14.8M 14.37 21.37 8.75 0.9659 Baidu Yun (105MB) (code: t81t)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages