by Hao Lu
The code has been tested on Python 3.7.4 and PyTorch 1.2.0. Please follow the
official instructions to configure your environment. See other required packages
in requirements.txt
.
Maize Tassels Counting
- Download the Maize Tassels Counting (MTC) dataset from: BaiduYun (1.64 GB) (code: m8rj) or Google Drive (1.8 GB)
- Unzip the dataset and move it into the
./data
folder, the path structure should look like this:
$./data/maize_tassels_counting_dataset
├──── trainval
│ ├──── images
│ └──── labels
├──── test
│ ├──── images
│ └──── labels
├──── train.txt
├──── test.txt
Run the following command to train TasselNetv2+ on the MTC dataset:
python --cfg config/mtc-tasselnetv2plus.yaml
- Setting
VAL.evaluate_only=False
andVAL.visualization=False
- Use
CUDA_VISIBLE_DEVICES
trick if you have multiple GPUs
If you find some useful tricks and tips, please share it here.
- (Hao Lu) Do not fix bn when training with pretrained models (batch_size=16 tested)
- (Hao Lu) Scale the ground truth by x10 for density-map-based methods when L2 Loss is used (reduction='mean')
Once the training is finished, run the same command above with VAL.evaluate_only=True
for inference.
- Setting
VAL.visualization=True
to output visualizations. Visualizations are saved in the path./results/<dataset>/<exp>/<epoch>
.
Method | Venue, Year | Pretrained | #Param. | MAE | MSE | rMAE | R2 | Model |
---|---|---|---|---|---|---|---|---|
CSRNet | CVPR 2018 | VGG16 | 16.3M | 9.43 | 14.43 | 100.65 | 0.7573 | One Drive (116MB) |
TasselNetv2 | PLME 2019 | No | 525K | 5.42 | 9.21 | 31.94 | 0.8923 | Baidu Yun (2MB) (code: hrhi) |
TasselNetv2+ | TBD | No | 262K | 5.41 | 9.31 | 37.65 | 0.8937 | Baidu Yun (2MB) (code: hbnx) |
BCNet-BN | TCSVT 2019 | VGG16 | 14.8M | 5.11 | 9.58 | 27.84 | 0.8749 | Baidu Yun (105MB) (code: mnys) |
Method | Venue, Year | Resolution | Pretrained | #Param. | MAE | MSE | rMAE | R2 | Model |
---|---|---|---|---|---|---|---|---|---|
TasselNetv2+ | TBD | 1/8 | No | 262K | 27.08 | 38.38 | 14.61 | 0.8958 | - |
TasselNetv2+ | TBD | 1/4 | No | 262K | 16.43 | 25.79 | 9.67 | 0.9515 | Baidu Yun (2MB) (code: 68dn) |
CSRNet | CVPR 2018 | 1/4 | VGG16 | 16.3M | 14.38 | 20.52 | 9.56 | 0.9704 | One Drive (116MB) |
BCNet-BN | TCSVT 2019 | 1/4 | VGG16 | 14.8M | 14.37 | 21.37 | 8.75 | 0.9659 | Baidu Yun (105MB) (code: t81t) |