Skip to content

paramvir3/Machine-Learning-Potentials-Halide-Perovskites-solar-cells-LEDs

Repository files navigation

ML-PERO-0

arXiv arXiv

General Information

  • GRACE-1Layer-FOUNDATIONAL model can be used for:

    1. OD, 1D, 2D, and 3D halide perovskites
    2. Any other components of perovskite solar cells including ETLs like TiO2, SnO2, SAMs etc, and including SPIRO and other organic HTMs etc, all kinds of passivating molecules, pseudo-halides mixtures
    3. All kinds of phase transitions can be performed for example titled phase transitions, mixed cation-anion perovskite crystallization from homogeneous mixtures of ions, non-perovskite to perovskite phase transitions, nucleation from solutions etc.
    4. Also perovskite LEDs and their components

    Important Note: Testing is under progress for many aspects since last year, finetuning is recommended for targeted problems

  • Use experimental structures https://github.com/paramvir3/Crystal-Structures-Halide-perovskite of halide perovskites

Codes Used

Features

  • CsPbBr3 [1] -- NEQUIP message passing machine learning interatomic potentials

melt_crystal

  • CsPbI3 [2] -- Neuroevolution Potential (NEP) and GPUMD
  1. Benchmarking against experiments:
  • Δ H: relative enthalpy (Kj/mol)
relative energies
  • CP: Heat Capacity of tilted phase transitions γ --> β --> α
latice_parameters heat capacity
  • Tm: melting point (K), Tm experiment = 750K
Melting point
  • kT: lattice thermal conductivity
Lattice thermal conductivity
  1. Simulations for designing and improving experiments for solar cells and LEDs [11-13]:
  • Smaller scale MD simulations

new_gif

  • Size Matters: device scale million atoms MD simulations revealing Zig-Zag Ruddlesden-Popper (RP) grain boundaries

SM6-ezgif com-video-to-gif-converter

Acknowledgements

  • Swiss National Science Foundation through post-doc mobility Fellowship No. P500PN_206693

References

  1. Lattice matched heterogeneous nucleation eliminate defective buried interface in halide perovskites: https://doi.org/10.1021/acs.chemmater.4c03034 , DFT dataset: https://doi.org/10.5281/zenodo.10975237

  2. Size dependent solid-solid crystallization of halide perovskites. https://doi.org/10.48550/arXiv.2404.05644

  3. Crystallization of FAPbI3: Polytypes and stacking faults." The Journal of Chemical Physics 159.15 (2023): https://doi.org/10.1063/5.0165285

  4. Organic Spacers in 2D Perovskites: General Trends and Structure‐Property Relationships from Computational Studies. Helvetica Chimica Acta 104.4 (2021): e2000232: https://doi.org/10.1002/hlca.202000232

  5. A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3.Sci. Adv.7,eabe3326(2021) https://www.science.org/doi/10.1126/sciadv.abe3326

  6. https://doi.org/10.1002/adma.202001069, https://doi.org/10.1021/acsnano.8b00267

  7. https://doi.org/10.1126/science.aax3878

  8. https://doi.org/10.1073/pnas.1711744114

  9. 10.1524/zpch.1992.175.part_1.063

  10. Vertically stacked monolithic perovskite colour photodetectors. Nature 642, 592–598 (2025). https://doi.org/10.1038/s41586-025-09062-3

  11. Intragrain 3D perovskite heterostructure for high-performance pure-red perovskite LEDs. Nature 641, 352–357 (2025). https://doi.org/10.1038/s41586-025-08867-6

  12. Ruddlesden–Popper Defects Act as a Free Surface: Role in Formation and Photophysical Properties of CsPbI3: https://doi.org/10.1002/adma.202501788

  13. Nanoscale heterophase regulation enables sunlight-like full-spectrum white electroluminescence. Nat Commun 16, 3621 (2025). https://doi.org/10.1038/s41467-025-58743-0

Fundamental Inspirations:

  1. Double heterostructures: https://www.nobelprize.org/uploads/2018/06/alferov-lecture.pdf
  2. Polar-on-nonpolar epitaxy: https://doi.org/10.1016/0022-0248(87)90391-5
  3. Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer: https://doi.org/10.1063/1.96549
  4. GaN Growth Using GaN Buffer Layer: 10.1143/JJAP.30.L1705
  5. Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites: https://doi.org/10.1021/ja00072a025
  6. Light trapping properties of pyramidally textured surfaces Available: https://doi.org/10.1063/1.339189
  7. Walter Kohn: THE POWER OF THE SUN

Contact

please raise issues, or write to paramvir.chem@gmail.com

About

(Precise, foundational) Machine learning interatomic potentials for halide perovskites and components of perovskite solar cells, LEDs and transistors

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published