-
GRACE-1Layer-FOUNDATIONAL model can be used for:
- OD, 1D, 2D, and 3D halide perovskites
- Any other components of perovskite solar cells including ETLs like TiO2, SnO2, SAMs etc, and including SPIRO and other organic HTMs etc, all kinds of passivating molecules, pseudo-halides mixtures
- All kinds of phase transitions can be performed for example titled phase transitions, mixed cation-anion perovskite crystallization from homogeneous mixtures of ions, non-perovskite to perovskite phase transitions, nucleation from solutions etc.
- Also perovskite LEDs and their components
Important Note: Testing is under progress for many aspects since last year, finetuning is recommended for targeted problems
-
Use experimental structures https://github.com/paramvir3/Crystal-Structures-Halide-perovskite of halide perovskites
- ASE:
- ACE-Julia:
- GRACE:
- k_SRME:https://github.com/MPA2suite/k_SRME.git
- LAMMPS:
- NEP-GPUMD:
- Nequip:
- PET-MAD:
- PLUMED:https://github.com/paramvir3/plumed2
- Quantum espresso:
- VASP:
- 7Net:
- CsPbBr3 [1] -- NEQUIP message passing machine learning interatomic potentials
- CsPbI3 [2] -- Neuroevolution Potential (NEP) and GPUMD
- Benchmarking against experiments:
- Δ H: relative enthalpy (Kj/mol)

- CP: Heat Capacity of tilted phase transitions γ --> β --> α


- Tm: melting point (K), Tm experiment = 750K

- kT: lattice thermal conductivity

- Simulations for designing and improving experiments for solar cells and LEDs [11-13]:
- Smaller scale MD simulations
- Size Matters: device scale million atoms MD simulations revealing Zig-Zag Ruddlesden-Popper (RP) grain boundaries
- Swiss National Science Foundation through post-doc mobility Fellowship No. P500PN_206693
-
Lattice matched heterogeneous nucleation eliminate defective buried interface in halide perovskites: https://doi.org/10.1021/acs.chemmater.4c03034 , DFT dataset: https://doi.org/10.5281/zenodo.10975237
-
Size dependent solid-solid crystallization of halide perovskites. https://doi.org/10.48550/arXiv.2404.05644
-
Crystallization of FAPbI3: Polytypes and stacking faults." The Journal of Chemical Physics 159.15 (2023): https://doi.org/10.1063/5.0165285
-
Organic Spacers in 2D Perovskites: General Trends and Structure‐Property Relationships from Computational Studies. Helvetica Chimica Acta 104.4 (2021): e2000232: https://doi.org/10.1002/hlca.202000232
-
A combined molecular dynamics and experimental study of two-step process enabling low-temperature formation of phase-pure α-FAPbI3.Sci. Adv.7,eabe3326(2021) https://www.science.org/doi/10.1126/sciadv.abe3326
-
https://doi.org/10.1002/adma.202001069, https://doi.org/10.1021/acsnano.8b00267
-
10.1524/zpch.1992.175.part_1.063
-
Vertically stacked monolithic perovskite colour photodetectors. Nature 642, 592–598 (2025). https://doi.org/10.1038/s41586-025-09062-3
-
Intragrain 3D perovskite heterostructure for high-performance pure-red perovskite LEDs. Nature 641, 352–357 (2025). https://doi.org/10.1038/s41586-025-08867-6
-
Ruddlesden–Popper Defects Act as a Free Surface: Role in Formation and Photophysical Properties of CsPbI3: https://doi.org/10.1002/adma.202501788
-
Nanoscale heterophase regulation enables sunlight-like full-spectrum white electroluminescence. Nat Commun 16, 3621 (2025). https://doi.org/10.1038/s41467-025-58743-0
- Double heterostructures: https://www.nobelprize.org/uploads/2018/06/alferov-lecture.pdf
- Polar-on-nonpolar epitaxy: https://doi.org/10.1016/0022-0248(87)90391-5
- Metalorganic vapor phase epitaxial growth of a high quality GaN film using an AlN buffer layer: https://doi.org/10.1063/1.96549
- GaN Growth Using GaN Buffer Layer: 10.1143/JJAP.30.L1705
- Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites: https://doi.org/10.1021/ja00072a025
- Light trapping properties of pyramidally textured surfaces Available: https://doi.org/10.1063/1.339189
- Walter Kohn: THE POWER OF THE SUN
please raise issues, or write to paramvir.chem@gmail.com