A showcase repository demonstrating how to build multi-agent AI tools using Model Context Protocol (MCP), RAG, and LangChain. This project serves as both a playground and reference implementation for building intelligent, pluggable AI assistants.
Build a pluggable AI knowledge assistant where each "agent" is a microservice powered by MCP. Agents can be specialized for different tasks and collaborate through the MCP protocol, orchestrated by LangChain.
┌─────────────────┐ ┌─────────────────┐ ┌─────────────────┐
│ Web UI │ │ LangChain │ │ MCP Agents │
│ (Next.js) │◄──►│ Orchestrator │◄──►│ (Microservices)│
└─────────────────┘ └─────────────────┘ └─────────────────┘
│
▼
┌─────────────────┐
│ RAG Pipeline │
│ (Chroma/FAISS)│
└─────────────────┘
- Pluggable Agent System: Add new agents without changing core code
- MCP Integration: Standardized communication between agents
- RAG Pipeline: Document processing and intelligent retrieval
- Multi-Agent Collaboration: Agents can hand off tasks to each other
- Extensible Connectors: Easy integration with external services
- 📚 Docs Agent: Answer questions from PDFs, Markdown, Confluence
- 💻 Code Agent: Explain, refactor, and generate code
- 🌐 Web Agent: Fetch real-time information via web search
- 💬 Chat Agent: General LLM conversation and task coordination
- Backend: Python, FastAPI, LangChain
- Frontend: Next.js, React, Tailwind CSS
- Database: ChromaDB (vector store), SQLite (metadata)
- Protocol: MCP (Model Context Protocol)
- AI: OpenAI, Anthropic (configurable)
- Deployment: Docker, Docker Compose
- Python 3.9+
- Node.js 18+
- Docker (optional)
cd backend
python -m venv venv
source venv/bin/activate # On Windows: venv\Scripts\activate
pip install -r requirements.txt
python main.py
cd frontend
npm install
npm run dev
Create a .env
file in the backend directory:
OPENAI_API_KEY=your_openai_key
ANTHROPIC_API_KEY=your_anthropic_key
CHROMA_HOST=localhost
CHROMA_PORT=8000
This is a showcase project - feel free to fork and adapt for your own use cases!
MIT License - see LICENSE file for details
Built with ❤️ using MCP, LangChain, and modern AI technologies