INLAomics is a hierarchical Bayesian model for analysing multiomic Spatial data using Integrated Nested Laplace Approximations (INLA). Biorxiv preprint INLAomics for Scalable and Interpretable Spatial Multiomic Data Integration
.
All analysis in the manuscript is carried out in R
V. 4.3.1 with packages R-INLA
V. 23.12.17 and R-stan
V. 2.26.23 (Stan
V. 2.26.1). For instructions on installation we refer to R-INLA
and mc-stan
.
All models are implemented through the R-package INLA
using the inla.rgeneric.define()
method. The relevant scripts are under ./INLA/
In ./tutorial
there is a script which gives some details of the implemented INLA methods and expected data formats.
The data generated in [1] is considered where files can be accessed at GSE198353. We have added cell annotations to two replicates of spleen tissue sections found in ./data
.
The necessary files are
.
├── GSE198353_spleen_rep_1.csv
├── GSE198353_spleen_rep_1_filtered_feature_bc_matrix.h5
├── GSE198353_spleen_rep_2.csv
├── GSE198353_spleen_rep_2_filtered_feature_bc_matrix.h5
├── GSE198353_spleen_replicate_1_spatial.tar.gz
├── GSE198353_spleen_replicate_2_spatial.tar.gz
├── spatial
│ ├── qc_aligned_fiducials_image.jpg
│ ├── qc_detected_tissue_image.jpg
│ ├── scalefactors_json.json
│ ├── tissue_hires_image.png
│ ├── tissue_lowres_image.png
│ └── tissue_positions_list.csv
├── spatial2
│ ├── qc_aligned_fiducials_image.jpg
│ ├── qc_detected_tissue_image.jpg
│ ├── scalefactors_json.json
│ ├── tissue_hires_image.png
│ ├── tissue_lowres_image.png
│ └── tissue_positions_list.csv
...1_spatial.tar.gz
and ...2_spatial.tar.gz
are our own annotations.
Figure d above illustrates how INLAomoics
can be utilized to construct genes-to-protein networks based on specific parameter estimates that encodes assay-to-assay effects.
Code to recreate CD3 rows are found in ./scripts/SPOTS/ProtVsGenes.R
with runtime on Apple M2 approximately 6h. Instructions for recreating any of the other rows of Figure d is outlined in the script file.
To recreate the results of figure e & f, see ./scripts/SPOTS/SpleenPred.R
The necessary files are
.
├── GSE198353_mmtv_pymt.csv
├── GSE198353_mmtv_pymt_ADT.csv.gz
├── GSE198353_mmtv_pymt_GEX_filtered_feature_bc_matrix.h5
├── GSE198353_mmtv_pymt_spatial.tar.gz
└── spatial
├── aligned_fiducials.jpg
├── detected_tissue_image.jpg
├── scalefactors_json.json
├── tissue_hires_image.png
├── tissue_lowres_image.png
└── tissue_positions_list.csv
GSE198353_mmtv_pymt.csv
are manual annotations found in ./data
. Example code can be found in ./scripts/SPOTS/BreastPrediction.R
.
.
├── raw_feature_bc_matrix
│ ├── barcodes.tsv.gz
│ ├── features.tsv.gz
│ └── matrix.mtx.gz
└── spatial
├── aligned_fiducials.jpg
├── aligned_tissue_image.jpg
├── cytassist_image.tiff
├── detected_tissue_image.jpg
├── scalefactors_json.json
├── spatial_enrichment.csv
├── tissue_hires_image.png
├── tissue_lowres_image.png
└── tissue_positions.csv
Example code can be found in ./scripts/visium/tonsil.R
.
├── GSM6578059_mousecolon_RNA.tsv.gz
├── GSM6578061_mousekidney_RNA.tsv.gz
├── GSM6578062_humantonsil_RNA.tsv.gz
├── GSM6578064_humanthymus_RNA.tsv.gz
├── GSM6578065_humanskin_RNA.tsv.gz
├── GSM6578068_mousecolon_protein.tsv.gz
├── GSM6578070_mousekidney_protein.tsv.gz
├── GSM6578071_humantonsil_protein.tsv.gz
├── GSM6578073_humanthymus_protein.tsv.gz
└── GSM6578074_humanskin_protein.tsv.gz
Example code can be found in ./scripts/Highplex/highplex.R
The scripts for carrying out the simulation studies are found in ./scripts/simulation/
. The script for comparison between INLA and MCMC is outlined InlaVsMcmc.R
, where one Monte-Carlo round takes approximately 30 minutes. The script for comparison between INLAomics and univariate correlation is found in InlaVsCorr.R
, where one Monte-Carlo round takes approximately 25 seconds.
[1] Ben-Chetrit, N., Niu, X., Swett, A. D., Sotelo, J., Jiao, M. S., Stewart, C. M., ... & Landau, D. A. (2023). Integration of whole transcriptome spatial profiling with protein markers. Nature biotechnology, 41(6), 788-793.