Skip to content

AIPyMemTimeProfiler gives you powerful insights into your Python code,no decorators, no setup, no hassle. Instantly track memory usage and execution time for every function in your app. Just run your script and get a clear, JSON-based performance report tailored to your codebase. Zero Code Changes. Maximum Visibility. Ideal for performance tuning.

Notifications You must be signed in to change notification settings

nikhillingadhal1999/AIPyMemTimeProfiler

Repository files navigation

Zero-Hassle AI Enabled Python Profiler for Time, Memory, return object size, cpu memory

AIPyMemTimeProfiler is a zero-configuration, AI-assisted Python profiler that automatically captures function-level memory and time usage — without any code changes.

Powered by LLMs, it not only measures performance but also analyzes your functions for inefficiencies and memory leaks.

Key Features

Zero code modifications — No decorators or wrappers needed

AI-powered analysis of selected functions

Function-level metrics for time, memory, arguments, return object size

Smart project detection — Profiles only your code, not external libraries

Structured JSON output for automation or visualization

Optional profiling of third-party libraries

Supports Flask apps, CLI scripts, nested folder hierarchies

Visualize Performance with Interactive Graphs

AIPyMemTimeProfiler includes a built-in Streamlit dashboard to visualize profiling data in a flamegraph-style format.

What You Get

  • Multi-metric overview (time, memory, cpu time, return object size)

  • Horizontal flame-style charts

  • Interactive tooltips for every function

  • No extra config — just run and view

Installation

pip install aipymemtimeprofiler

Quick Start

1. Set Environment Variables or pass arguments

export PROFILER_FILE_PATH="/absolute/path/to/your_script.py"
export PROFILER_DIR_PATH="/absolute/path/to/your/project/root"

If you just want to try, you can test it with sample_project.

export PROFILER_FILE_PATH="$(pwd)/sample_project/inside/app.py": The Python file to be profiled
export PROFILER_DIR_PATH="$(pwd)/sample_project/inside": Root of your project for accurate filtering

CLI entry point

profile_code

OR pass arguments

profile_code --file-path your_script.py --dir-path /your/output/dir

Arguments

Argument Env Variable Description Default
-h, --help Show this help message and exit
--file-path FILE_PATH PROFILER_FILE_PATH Path to the Python script to profile None
--dir-path DIR_PATH PROFILER_DIR_PATH Working directory and output path ./sample_project/inside
--console-display CONSOLE_DISPLAY=True Print profiling output to the console False
--agentic-profiler AGENTIC_PROFILER=True Enable AI-based interactive profiling assistant False
--ollama-model OLLAMA_MODEL AGENT_NAME LLM model name to use with the agentic profiler deepseek-r1:1.5b
--include-libraries INCLUDE_LIBRARIES=True Include external libraries during profiling False
--leak-threshold-kb LEAK_THRESHOLD_KB Memory leak threshold in KB 10

Launch the Graph UI

profile_graph

2. If you want to verify 3rd party libraries

export INCLUDE_LIBRARIES=True

LLM Environment Setup

Download Ollama from Ollama

ollama run <yout_model>

If you don't know which model to use.

ollama run deepseek-r1:1.5b: It is preferable as it is light weight.

Set your model env variable.

export AGENT_NAME="<your_model>"
export AGENTIC_PROFILER=True

TL;DR

pip install aipymemtimeprofiler export PROFILER_FILE_PATH=./app.py export PROFILER_DIR_PATH=./ profile_code

You’ll be prompted to select a function to analyze. Example:

Index Function File Path
0 calculate_data /project/app/compute.py
1 main /project/app/main.py
N Skip Analysis -

Time & Memory Metrics

Automatically captures:

  • Max execution time (CPU)
  • Peak memory usage
  • RSS memory growth
  • Return object size
  • Arguments passed

Project-Aware Analysis

Only your code is profiled.
System libraries and external modules are ignored using intelligent project-path detection.

Profiler Metrics

The following table describes the metrics collected by the profiler:

Metric Description Key
Function Name The name of the function being profiled. function
File Path The absolute path to the file where the function is defined. file
Line Number The line number where the function starts in the file. line
Execution Time Maximum time taken by each function in milliseconds (ms). max_time_ms
CPU Time Time spent by the CPU on this function (ms). cpu_time_ms
Peak Memory Usage Maximum memory usage during function execution in kilobytes (KB). max_mem
RSS Memory Growth Growth in Resident Set Size (RSS) memory in kilobytes (KB), helps spot memory leaks. mem_growth_rss_kb
Arguments The arguments passed to the function being profiled. args
Possible Memory Leak Indicates if a potential memory leak is detected (if any). possible_memory_leak
Notes Any additional notes related to the profiling data. note
Returned Object Size The size of the returned object in bytes. return_obj

Option to select a function for analysis, which is analysed by the Ollama model installed and configured. This is the table providing the options for analysis.

Available Functions for Analysis

Index Function Name File Path
0 function_one /path/to/file_one.py
1 function_two /path/to/file_two.py
2 function_three /path/to/file_three.py
3 function_four /path/to/file_four.py
4 function_five /path/to/file_five.py
... ... ...
N function_n /path/to/file_n.py
N+1 Skip Analysis -

Structured JSON Reports

{ "function": "calculate_total", "file": "/app/logic.py", "line": 23, "cpu_time_ms": 15.3, "max_mem": 1024, "mem_growth_rss_kb": 300, "args": ["x", "y"], "return_obj": 124, "possible_memory_leak": false, "note": "" }

Works with Any Project Structure

Handles nested folder hierarchies easily — just point to your project root and go.


Supported Use Cases

  • Pure Python projects
  • Flask APIs and apps
  • Any directory layout

Want More?

  • Console table toggle
  • HTML report output

Pull requests are welcome!

About

AIPyMemTimeProfiler gives you powerful insights into your Python code,no decorators, no setup, no hassle. Instantly track memory usage and execution time for every function in your app. Just run your script and get a clear, JSON-based performance report tailored to your codebase. Zero Code Changes. Maximum Visibility. Ideal for performance tuning.

Topics

Resources

Code of conduct

Stars

Watchers

Forks

Packages

No packages published