Calendar
Biowulf Setup
Install
Time | Topic | Presenter |
---|---|---|
9:00 - 9:15 | Computer Setup etc | |
9:15 - 9:30 | Course Intro + Souce Localization (for connectivity) | Jeff |
9:30 - 10:30 | Connectivity Background | Lucrezia |
10:30 - 11:30 | Connectivity Code | |
11:30 - 12:30 | Lunch | |
12:30 - 1:30 | Decoding Background | Lina |
1:45 - 2:30 | Decoding Applications | Shruti, Alexis, Sebastian |
2:30 - 4:00 | Decoding Code |
Once in NoMachine on Biowulf, copy the following lines into your terminal. Start a processing terminal
sinteractive --mem=32G --cpus-per-task=12 --tunnel #Wait for this to start
module use --append /data/MEGmodules/modulefiles #You can add this to your .bashrc for convenience
module load meg_workshop/2025adv.1
get_code #Copy the code to your current directory
get_data #Copy and untar the data to your /data/${USER}/meg_data_workshop
cd /data/${USER}/NIH_MEG_Workshop_AdvancedTopics
jupyter notebook --no-browser --port $PORT1
Once the prompts come up, you will see a line like the following:
Open an Internet Browser in the top left corner and add the IP address and token into the address bar
Log into biowulf: ssh -Y USERNAME@biowulf.nih.gov
#You can type tmux before starting sinteractive to have a persistent session between disconnecting wifi
#Allocate resources for processing
sinteractive --mem=32G --cpus-per-task=12 --gres=lscratch:10 --tunnel --time=08:00:00
You will see a line like the below. Follow the instructions (start a new terminal into biowulf), then return to original terminal for the rest of the commands.
Copy the following lines into your terminal. This will copy the code/notebooks and data into your local folder.
sinteractive --mem=32G --cpus-per-task=12 --tunnel #Wait for this to start
module use --append /data/MEGmodules/modulefiles #You can add this to your .bashrc for convenience
module load meg_workshop/2025adv.1
get_code #Copy the code to your current directory
get_data #Copy and untar the data to your /data/${USER}/meg_data_workshop
cd /data/${USER}/NIH_MEG_Workshop_AdvancedTopics
jupyter notebook --no-browser --port $PORT1
Enter this into the address bar of your web browser localhost:<PORT>
NOTE:If you get something about a token: Copy it from the commandline
Install using make:
make install_env
Install from conda environment.yml file:
conda env create --name envname --file=environments.yml