This module allows Magento administrators to generate HTML landing page content using an AI service (currently configured for Google Gemini) based on product data, category data, or a custom text prompt. The generated content can then be reviewed and saved directly as a standard Magento CMS Block.
Current Version: 1.0.0 Target Magento Version: 2.4.6
- Generate landing page HTML using Google Gemini.
- Input sources:
- Specific Product data (Name, Descriptions, Price, Meta Desc)
- Specific Category data (Name, Description, Product Names)
- Custom user-provided text prompt.
- Admin interface integrated under Content > Elements > Generate AI Landing.
- Preview generated HTML content.
- Option to regenerate content.
- Save generated content directly as a new, active CMS Block.
- Configuration section for API Key management.
Using Composer (Recommended - if packaged):
composer require neutromelabs/module-ailand
bin/magento setup:upgrade
bin/magento setup:di:compile
bin/magento setup:static-content:deploy [your locales] -f
bin/magento cache:flush
(Note: Replace neutromelabs/module-ailand
with the actual package name if published)
Manual Installation:
- Download or clone the module files.
- Create the directory structure
app/code/NeutromeLabs/AiLand
. - Copy the module files into this directory.
- Enable the module and run setup commands:
bin/magento module:enable NeutromeLabs_AiLand bin/magento setup:upgrade bin/magento setup:di:compile bin/magento setup:static-content:deploy [your locales] -f bin/magento cache:flush
- Log in to the Magento Admin panel.
- Navigate to Stores > Configuration > NeutromeLabs > AI Landings.
- Expand the Google Gemini API section.
- Enter your API Key obtained from Google AI Studio or Google Cloud Console.
- Click Save Config.
See USER_FLOWS.md
for detailed steps on how to generate and save landing pages.
- Implement the actual Google Gemini API call logic in
Model/AiGenerator.php
. - Add robust JavaScript for handling AJAX calls, button states (loading indicators), and updating the preview area dynamically.
- Implement the full Product Chooser UI component listing.
- Add more sophisticated validation for form inputs.
- Potentially add options for AI model selection, temperature, max tokens, etc., in configuration.
- Improve error handling and user feedback for API calls.
- Add unit/integration tests.