Skip to content

Conversation

PSSF23
Copy link
Member

@PSSF23 PSSF23 commented Jul 10, 2025

According to errors in neurodata/treeple#361, xfail_checks is not available in the tags.

Copy link

❌ Linting issues

This PR is introducing linting issues. Here's a summary of the issues. Note that you can avoid having linting issues by enabling pre-commit hooks. Instructions to enable them can be found here.

You can see the details of the linting issues under the lint job here


ruff

ruff detected issues. Please run ruff check --fix --output-format=full . locally, fix the remaining issues, and push the changes. Here you can see the detected issues. Note that the installed ruff version is ruff=0.5.1.

 linter ###

All checks passed!
No problem detected by the ruff linter

### Running the ruff formatter ###

--- build_tools/circle/list_versions.py
+++ build_tools/circle/list_versions.py
@@ -71,9 +71,7 @@
     "Web-based documentation is available for versions listed below:\n",
 ]
 
-ROOT_URL = (
-    "https://api.github.com/repos/scikit-learn/scikit-learn.github.io/contents/"  # noqa
-)
+ROOT_URL = "https://api.github.com/repos/scikit-learn/scikit-learn.github.io/contents/"  # noqa
 RAW_FMT = "https://raw.githubusercontent.com/scikit-learn/scikit-learn.github.io/master/%s/index.html"  # noqa
 VERSION_RE = re.compile(r"scikit-learn ([\w\.\-]+) documentation</title>")
 NAMED_DIRS = ["dev", "stable"]

--- examples/applications/plot_species_distribution_modeling.py
+++ examples/applications/plot_species_distribution_modeling.py
@@ -109,7 +109,7 @@
 
 
 def plot_species_distribution(
-    species=("bradypus_variegatus_0", "microryzomys_minutus_0")
+    species=("bradypus_variegatus_0", "microryzomys_minutus_0"),
 ):
     """
     Plot the species distribution.

--- examples/ensemble/plot_bias_variance.py
+++ examples/ensemble/plot_bias_variance.py
@@ -177,8 +177,8 @@
 
     plt.subplot(2, n_estimators, n_estimators + n + 1)
     plt.plot(X_test, y_error, "r", label="$error(x)$")
-    plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"),
-    plt.plot(X_test, y_var, "g", label="$variance(x)$"),
+    (plt.plot(X_test, y_bias, "b", label="$bias^2(x)$"),)
+    (plt.plot(X_test, y_var, "g", label="$variance(x)$"),)
     plt.plot(X_test, y_noise, "c", label="$noise(x)$")
 
     plt.xlim([-5, 5])

--- examples/linear_model/plot_tweedie_regression_insurance_claims.py
+++ examples/linear_model/plot_tweedie_regression_insurance_claims.py
@@ -604,8 +604,9 @@
             "predicted, frequency*severity model": np.sum(
                 exposure * glm_freq.predict(X) * glm_sev.predict(X)
             ),
-            "predicted, tweedie, power=%.2f"
-            % glm_pure_premium.power: np.sum(exposure * glm_pure_premium.predict(X)),
+            "predicted, tweedie, power=%.2f" % glm_pure_premium.power: np.sum(
+                exposure * glm_pure_premium.predict(X)
+            ),
         }
     )
 

--- examples/manifold/plot_lle_digits.py
+++ examples/manifold/plot_lle_digits.py
@@ -10,7 +10,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 # %%
 # Load digits dataset
 # -------------------

--- examples/manifold/plot_manifold_sphere.py
+++ examples/manifold/plot_manifold_sphere.py
@@ -50,7 +50,7 @@
 t = random_state.rand(n_samples) * np.pi
 
 # Sever the poles from the sphere.
-indices = (t < (np.pi - (np.pi / 8))) & (t > ((np.pi / 8)))
+indices = (t < (np.pi - (np.pi / 8))) & (t > (np.pi / 8))
 colors = p[indices]
 x, y, z = (
     np.sin(t[indices]) * np.cos(p[indices]),

--- sklearn/_loss/tests/test_loss.py
+++ sklearn/_loss/tests/test_loss.py
@@ -215,7 +215,8 @@
 
 
 @pytest.mark.parametrize(
-    "loss, y_pred_success, y_pred_fail", Y_COMMON_PARAMS + Y_PRED_PARAMS  # type: ignore
+    "loss, y_pred_success, y_pred_fail",
+    Y_COMMON_PARAMS + Y_PRED_PARAMS,  # type: ignore
 )
 def test_loss_boundary_y_pred(loss, y_pred_success, y_pred_fail):
     """Test boundaries of y_pred for loss functions."""
@@ -501,12 +502,14 @@
         sample_weight=sample_weight,
         loss_out=out_l1,
     )
-    loss.closs.loss(
-        y_true=y_true,
-        raw_prediction=raw_prediction,
-        sample_weight=sample_weight,
-        loss_out=out_l2,
-    ),
+    (
+        loss.closs.loss(
+            y_true=y_true,
+            raw_prediction=raw_prediction,
+            sample_weight=sample_weight,
+            loss_out=out_l2,
+        ),
+    )
     assert_allclose(out_l1, out_l2)
     loss.gradient(
         y_true=y_true,

--- sklearn/cluster/_feature_agglomeration.py
+++ sklearn/cluster/_feature_agglomeration.py
@@ -6,7 +6,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import numpy as np
 from scipy.sparse import issparse
 

--- sklearn/cross_decomposition/tests/test_pls.py
+++ sklearn/cross_decomposition/tests/test_pls.py
@@ -404,12 +404,12 @@
 
     X_orig = X.copy()
     with pytest.raises(AssertionError):
-        pls.transform(X, Y, copy=False),
+        (pls.transform(X, Y, copy=False),)
         assert_array_almost_equal(X, X_orig)
 
     X_orig = X.copy()
     with pytest.raises(AssertionError):
-        pls.predict(X, copy=False),
+        (pls.predict(X, copy=False),)
         assert_array_almost_equal(X, X_orig)
 
     # Make sure copy=True gives same transform and predictions as predict=False

--- sklearn/ensemble/_bagging.py
+++ sklearn/ensemble/_bagging.py
@@ -3,7 +3,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import itertools
 import numbers
 from abc import ABCMeta, abstractmethod

--- sklearn/ensemble/_forest.py
+++ sklearn/ensemble/_forest.py
@@ -35,7 +35,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import threading
 from abc import ABCMeta, abstractmethod
 from numbers import Integral, Real

--- sklearn/ensemble/tests/test_forest.py
+++ sklearn/ensemble/tests/test_forest.py
@@ -282,11 +282,12 @@
     reg = ForestRegressor(n_estimators=5, criterion=criterion, random_state=1)
     reg.fit(X_reg, y_reg)
     score = reg.score(X_reg, y_reg)
-    assert (
-        score > 0.93
-    ), "Failed with max_features=None, criterion %s and score = %f" % (
-        criterion,
-        score,
+    assert score > 0.93, (
+        "Failed with max_features=None, criterion %s and score = %f"
+        % (
+            criterion,
+            score,
+        )
     )
 
     reg = ForestRegressor(
@@ -1858,11 +1859,12 @@
     )
     reg.fit(X_reg, y_reg)
     score = reg.score(X_reg, y_reg)
-    assert (
-        score > 0.93
-    ), "Failed with max_features=None, criterion %s and score = %f" % (
-        criterion,
-        score,
+    assert score > 0.93, (
+        "Failed with max_features=None, criterion %s and score = %f"
+        % (
+            criterion,
+            score,
+        )
     )
 
     reg = ForestRegressor(

--- sklearn/experimental/enable_hist_gradient_boosting.py
+++ sklearn/experimental/enable_hist_gradient_boosting.py
@@ -13,7 +13,6 @@
 # Don't remove this file, we don't want to break users code just because the
 # feature isn't experimental anymore.
 
-
 import warnings
 
 warnings.warn(

--- sklearn/feature_selection/_univariate_selection.py
+++ sklearn/feature_selection/_univariate_selection.py
@@ -3,7 +3,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import warnings
 from numbers import Integral, Real
 

--- sklearn/gaussian_process/tests/test_gpc.py
+++ sklearn/gaussian_process/tests/test_gpc.py
@@ -147,8 +147,9 @@
     # Define a dummy optimizer that simply tests 10 random hyperparameters
     def optimizer(obj_func, initial_theta, bounds):
         rng = np.random.RandomState(global_random_seed)
-        theta_opt, func_min = initial_theta, obj_func(
-            initial_theta, eval_gradient=False
+        theta_opt, func_min = (
+            initial_theta,
+            obj_func(initial_theta, eval_gradient=False),
         )
         for _ in range(10):
             theta = np.atleast_1d(

--- sklearn/gaussian_process/tests/test_gpr.py
+++ sklearn/gaussian_process/tests/test_gpr.py
@@ -394,8 +394,9 @@
     # Define a dummy optimizer that simply tests 50 random hyperparameters
     def optimizer(obj_func, initial_theta, bounds):
         rng = np.random.RandomState(0)
-        theta_opt, func_min = initial_theta, obj_func(
-            initial_theta, eval_gradient=False
+        theta_opt, func_min = (
+            initial_theta,
+            obj_func(initial_theta, eval_gradient=False),
         )
         for _ in range(50):
             theta = np.atleast_1d(

--- sklearn/linear_model/_linear_loss.py
+++ sklearn/linear_model/_linear_loss.py
@@ -537,9 +537,9 @@
                 # The L2 penalty enters the Hessian on the diagonal only. To add those
                 # terms, we use a flattened view of the array.
                 order = "C" if hess.flags.c_contiguous else "F"
-                hess.reshape(-1, order=order)[
-                    : (n_features * n_dof) : (n_dof + 1)
-                ] += l2_reg_strength
+                hess.reshape(-1, order=order)[: (n_features * n_dof) : (n_dof + 1)] += (
+                    l2_reg_strength
+                )
 
             if self.fit_intercept:
                 # With intercept included as added column to X, the hessian becomes

--- sklearn/linear_model/_ridge.py
+++ sklearn/linear_model/_ridge.py
@@ -5,7 +5,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import numbers
 import warnings
 from abc import ABCMeta, abstractmethod

--- sklearn/linear_model/_theil_sen.py
+++ sklearn/linear_model/_theil_sen.py
@@ -5,7 +5,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import warnings
 from itertools import combinations
 from numbers import Integral, Real

--- sklearn/manifold/_spectral_embedding.py
+++ sklearn/manifold/_spectral_embedding.py
@@ -3,7 +3,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import warnings
 from numbers import Integral, Real
 

--- sklearn/metrics/_classification.py
+++ sklearn/metrics/_classification.py
@@ -10,7 +10,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import warnings
 from numbers import Integral, Real
 

--- sklearn/metrics/_ranking.py
+++ sklearn/metrics/_ranking.py
@@ -10,7 +10,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import warnings
 from functools import partial
 from numbers import Integral, Real

--- sklearn/metrics/cluster/_supervised.py
+++ sklearn/metrics/cluster/_supervised.py
@@ -7,7 +7,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import warnings
 from math import log
 from numbers import Real

--- sklearn/metrics/cluster/_unsupervised.py
+++ sklearn/metrics/cluster/_unsupervised.py
@@ -3,7 +3,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import functools
 from numbers import Integral
 

--- sklearn/metrics/tests/test_common.py
+++ sklearn/metrics/tests/test_common.py
@@ -976,7 +976,8 @@
 @pytest.mark.parametrize("metric", CLASSIFICATION_METRICS.values())
 @pytest.mark.parametrize(
     "y_true, y_score",
-    invalids_nan_inf +
+    invalids_nan_inf
+    +
     # Add an additional case for classification only
     # non-regression test for:
     # https://github.com/scikit-learn/scikit-learn/issues/6809
@@ -2006,7 +2007,6 @@
 
 
 def check_array_api_metric_pairwise(metric, array_namespace, device, dtype_name):
-
     X_np = np.array([[0.1, 0.2, 0.3], [0.4, 0.5, 0.6]], dtype=dtype_name)
     Y_np = np.array([[0.2, 0.3, 0.4], [0.5, 0.6, 0.7]], dtype=dtype_name)
 

--- sklearn/model_selection/_validation.py
+++ sklearn/model_selection/_validation.py
@@ -6,7 +6,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 import numbers
 import time
 import warnings

--- sklearn/multioutput.py
+++ sklearn/multioutput.py
@@ -8,7 +8,6 @@
 # Authors: The scikit-learn developers
 # SPDX-License-Identifier: BSD-3-Clause
 
-
 from abc import ABCMeta, abstractmethod
 from numbers import Integral
 

--- sklearn/neighbors/tests/test_neighbors.py
+++ sklearn/neighbors/tests/test_neighbors.py
@@ -655,10 +655,12 @@
             assert_allclose(np.concatenate(list(ind)), np.concatenate(list(ind1)))
 
         for i in range(len(results) - 1):
-            assert_allclose(
-                np.concatenate(list(results[i][0])),
-                np.concatenate(list(results[i + 1][0])),
-            ),
+            (
+                assert_allclose(
+                    np.concatenate(list(results[i][0])),
+                    np.concatenate(list(results[i + 1][0])),
+                ),
+            )
             assert_allclose(
                 np.concatenate(list(results[i][1])),
                 np.concatenate(list(results[i + 1][1])),

--- sklearn/tests/test_common.py
+++ sklearn/tests/test_common.py
@@ -345,7 +345,6 @@
     "transformer", GET_FEATURES_OUT_ESTIMATORS, ids=_get_check_estimator_ids
 )
 def test_transformers_get_feature_names_out(transformer):
-
     with ignore_warnings(category=(FutureWarning)):
         check_transformer_get_feature_names_out(
             transformer.__class__.__name__, transformer

--- sklearn/tests/test_metaestimators.py
+++ sklearn/tests/test_metaestimators.py
@@ -157,11 +157,12 @@
             if method in delegator_data.skip_methods:
                 continue
             assert hasattr(delegate, method)
-            assert hasattr(
-                delegator, method
-            ), "%s does not have method %r when its delegate does" % (
-                delegator_data.name,
-                method,
+            assert hasattr(delegator, method), (
+                "%s does not have method %r when its delegate does"
+                % (
+                    delegator_data.name,
+                    method,
+                )
             )
             # delegation before fit raises a NotFittedError
             if method == "score":
@@ -191,11 +192,12 @@
             delegate = SubEstimator(hidden_method=method)
             delegator = delegator_data.construct(delegate)
             assert not hasattr(delegate, method)
-            assert not hasattr(
-                delegator, method
-            ), "%s has method %r when its delegate does not" % (
-                delegator_data.name,
-                method,
+            assert not hasattr(delegator, method), (
+                "%s has method %r when its delegate does not"
+                % (
+                    delegator_data.name,
+                    method,
+                )
             )
 
 

--- sklearn/utils/_metadata_requests.py
+++ sklearn/utils/_metadata_requests.py
@@ -1098,8 +1098,9 @@
             method_mapping = MethodMapping()
             for method in METHODS:
                 method_mapping.add(caller=method, callee=method)
-            yield "$self_request", RouterMappingPair(
-                mapping=method_mapping, router=self._self_request
+            yield (
+                "$self_request",
+                RouterMappingPair(mapping=method_mapping, router=self._self_request),
             )
         for name, route_mapping in self._route_mappings.items():
             yield (name, route_mapping)

--- sklearn/utils/estimator_checks.py
+++ sklearn/utils/estimator_checks.py
@@ -4783,9 +4783,7 @@
                 'Only binary classification is supported. The type of the target '
                 f'is {{y_type}}.'
         )
-    """.format(
-        name=name
-    )
+    """.format(name=name)
     err_msg = textwrap.dedent(err_msg)
 
     with raises(

--- sklearn/utils/tests/test_multiclass.py
+++ sklearn/utils/tests/test_multiclass.py
@@ -416,12 +416,13 @@
 def test_type_of_target():
     for group, group_examples in EXAMPLES.items():
         for example in group_examples:
-            assert (
-                type_of_target(example) == group
-            ), "type_of_target(%r) should be %r, got %r" % (
-                example,
-                group,
-                type_of_target(example),
+            assert type_of_target(example) == group, (
+                "type_of_target(%r) should be %r, got %r"
+                % (
+                    example,
+                    group,
+                    type_of_target(example),
+                )
             )
 
     for example in NON_ARRAY_LIKE_EXAMPLES:

--- sklearn/utils/tests/test_seq_dataset.py
+++ sklearn/utils/tests/test_seq_dataset.py
@@ -154,30 +154,34 @@
 
 def test_buffer_dtype_mismatch_error():
     with pytest.raises(ValueError, match="Buffer dtype mismatch"):
-        ArrayDataset64(X32, y32, sample_weight32, seed=42),
+        (ArrayDataset64(X32, y32, sample_weight32, seed=42),)
 
     with pytest.raises(ValueError, match="Buffer dtype mismatch"):
-        ArrayDataset32(X64, y64, sample_weight64, seed=42),
+        (ArrayDataset32(X64, y64, sample_weight64, seed=42),)
 
     for csr_container in CSR_CONTAINERS:
         X_csr32 = csr_container(X32)
         X_csr64 = csr_container(X64)
         with pytest.raises(ValueError, match="Buffer dtype mismatch"):
-            CSRDataset64(
-                X_csr32.data,
-                X_csr32.indptr,
-                X_csr32.indices,
-                y32,
-                sample_weight32,
-                seed=42,
-            ),
+            (
+                CSRDataset64(
+                    X_csr32.data,
+                    X_csr32.indptr,
+                    X_csr32.indices,
+                    y32,
+                    sample_weight32,
+                    seed=42,
+                ),
+            )
 
         with pytest.raises(ValueError, match="Buffer dtype mismatch"):
-            CSRDataset32(
-                X_csr64.data,
-                X_csr64.indptr,
-                X_csr64.indices,
-                y64,
-                sample_weight64,
-                seed=42,
-            ),
+            (
+                CSRDataset32(
+                    X_csr64.data,
+                    X_csr64.indptr,
+                    X_csr64.indices,
+                    y64,
+                    sample_weight64,
+                    seed=42,
+                ),
+            )

34 files would be reformatted, 889 files already formatted

Generated for commit: 2097d07. Link to the linter CI: here

@PSSF23 PSSF23 merged commit 0e43e91 into submodulev3 Jul 10, 2025
8 of 13 checks passed
@PSSF23 PSSF23 deleted the xfail branch July 10, 2025 18:18
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Projects

None yet

Development

Successfully merging this pull request may close these issues.

1 participant