We read every piece of feedback, and take your input very seriously.
To see all available qualifiers, see our documentation.
There was an error while loading. Please reload this page.
metric
1 parent 6d9d09a commit b3c213bCopy full SHA for b3c213b
sklearn/impute/_knn.py
@@ -55,9 +55,9 @@ class KNNImputer(_BaseImputer):
55
56
- 'nan_euclidean'
57
- callable : a user-defined function which conforms to the definition
58
- of ``_pairwise_callable(X, Y, metric, **kwds)``. The function
59
- accepts two arrays, X and Y, and a `missing_values` keyword in
60
- `kwds` and returns a scalar distance value.
+ of ``func_metric(x, y, *, missing_values=np.nan)``. `x` and `y`
+ corresponds to a row (i.e. 1-D arrays) of `X` and `Y`, respectively.
+ The callable should returns a scalar distance value.
61
62
copy : bool, default=True
63
If True, a copy of X will be created. If False, imputation will
0 commit comments