Skip to content

Commit 6d9d09a

Browse files
authored
DOC GradientBoosting* will not implement monotonic constraints, use HistGradientBoosting* instead (scikit-learn#27516)
1 parent 6032c95 commit 6d9d09a

File tree

1 file changed

+6
-4
lines changed

1 file changed

+6
-4
lines changed

sklearn/ensemble/_gb.py

Lines changed: 6 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1123,8 +1123,9 @@ class GradientBoostingClassifier(ClassifierMixin, BaseGradientBoosting):
11231123
classification is a special case where only a single regression tree is
11241124
induced.
11251125
1126-
:class:`sklearn.ensemble.HistGradientBoostingClassifier` is a much faster
1127-
variant of this algorithm for intermediate datasets (`n_samples >= 10_000`).
1126+
:class:`~sklearn.ensemble.HistGradientBoostingClassifier` is a much faster variant
1127+
of this algorithm for intermediate and large datasets (`n_samples >= 10_000`) and
1128+
supports monotonic constraints.
11281129
11291130
Read more in the :ref:`User Guide <gradient_boosting>`.
11301131
@@ -1726,8 +1727,9 @@ class GradientBoostingRegressor(RegressorMixin, BaseGradientBoosting):
17261727
each stage a regression tree is fit on the negative gradient of the given
17271728
loss function.
17281729
1729-
:class:`sklearn.ensemble.HistGradientBoostingRegressor` is a much faster
1730-
variant of this algorithm for intermediate datasets (`n_samples >= 10_000`).
1730+
:class:`~sklearn.ensemble.HistGradientBoostingRegressor` is a much faster variant
1731+
of this algorithm for intermediate and large datasets (`n_samples >= 10_000`) and
1732+
supports monotonic constraints.
17311733
17321734
Read more in the :ref:`User Guide <gradient_boosting>`.
17331735

0 commit comments

Comments
 (0)