Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 24 additions & 3 deletions proglearn/deciders.py
Original file line number Diff line number Diff line change
Expand Up @@ -89,6 +89,7 @@ def fit(
self.classes = np.array(self.classes)
self.transformer_id_to_transformers_ = transformer_id_to_transformers
self.transformer_id_to_voters_ = transformer_id_to_voters

return self

def predict_proba(self, X, transformer_ids=None):
Expand All @@ -115,33 +116,53 @@ def predict_proba(self, X, transformer_ids=None):
y_proba_hat : ndarray of shape [n_samples, n_classes]
posteriors per example


Raises
------
NotFittedError
When the model is not fitted.
"""
check_is_fitted(self)
vote_per_transformer_id = []
prior_posterior_per_id = []
for transformer_id in (
transformer_ids
if transformer_ids is not None
else self.transformer_id_to_voters_.keys()
):
check_is_fitted(self)
vote_per_bag_id = []
prior_posterior_per_bag = []
for bag_id in range(
len(self.transformer_id_to_transformers_[transformer_id])
):
transformer = self.transformer_id_to_transformers_[transformer_id][
bag_id
]
# X.shape = (n_samples, n_features)
X_transformed = transformer.transform(X)
# X_transformed.shape = (n_samples,)
voter = self.transformer_id_to_voters_[transformer_id][bag_id]
vote = voter.predict_proba(X_transformed)
# vote.shape = (n_samples, n_classes)
vote_per_bag_id.append(vote)
vote_per_transformer_id.append(np.mean(vote_per_bag_id, axis=0))
return np.mean(vote_per_transformer_id, axis=0)

prior_posterior_per_bag.append(voter.prior_posterior_)
# Each sample gets the average over transformers. Exclude all zeros in the mean
# vote_per_bag_id.shape = (n_transformers, n_samples, n_classes)
transformer_vote = np.sum(vote_per_bag_id, axis=0)
num_transformers = np.sum(vote_per_bag_id, axis=2).sum(axis=0)[:, None]
vote_per_transformer_id.append(np.divide(
transformer_vote, num_transformers, out=np.zeros_like(transformer_vote), where=num_transformers!=0))

prior_posterior_per_id.append(np.mean(prior_posterior_per_bag, axis=0))

# vote_per_transformer_id.shape = (1, n_samples, n_classes)
predicted_posteriors = np.mean(vote_per_transformer_id, axis=0)
# Correction for samples not predicted by any tree
unknown_sample_indices = np.where(np.sum(predicted_posteriors, axis=1) == 0)[0]
predicted_posteriors[unknown_sample_indices] = np.mean(prior_posterior_per_id, axis=0)

return predicted_posteriors

def predict(self, X, transformer_ids=None):
"""
Expand Down
Loading