Skip to content

neumanns-workshop/diffusion-experiments

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Geometric Art Generator

A pipeline for generating bespoke series of art using deep learning models trained on custom geometric datasets.

Overview

This project creates a pipeline to:

  1. Generate custom geometric datasets with various style properties
  2. Train models (GANs) on these datasets
  3. Generate new geometric art for potential NFT creation

Features

  • Multiple geometric style generators (grid, triangle, circle, brutalist, etc.)
  • Customizable style parameters
  • GAN training with different architectures
  • Visualization tools for dataset and generated images

Setup

# Set up environment with uv
uv venv
source .venv/bin/activate  # On Unix/MacOS
# .venv\Scripts\activate  # On Windows

# Install dependencies
uv pip install -r requirements.txt

Usage

Generate Dataset

python -m art_generator.datasets.generate --style grid --count 100 --output datasets/grid

Train Model

python -m art_generator.train --dataset datasets/grid --output models/grid_model

Generate Art

python -m art_generator.generate --model models/grid_model --count 10 --output generated

Style Examples

  • Grid: Structured, Mondrian-like compositions
  • Triangles: Angular, tessellated patterns
  • Circles: Organic, rounded forms
  • Brutalist: Bold, heavy, blocky structures

Project Structure

art_generator/
├── datasets/          # Dataset generation code
│   ├── __init__.py
│   ├── generate.py    # Dataset generation script
│   └── styles/        # Different geometric style generators
├── models/            # Model definitions
│   ├── __init__.py
│   ├── gan.py         # GAN architecture
│   └── training.py    # Training utilities
├── utils/             # Utility functions
│   ├── __init__.py
│   ├── visualization.py  # Visualization tools
│   └── config.py      # Configuration utilities
└── generate.py        # Image generation script

License

MIT

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages