A pipeline for generating bespoke series of art using deep learning models trained on custom geometric datasets.
This project creates a pipeline to:
- Generate custom geometric datasets with various style properties
- Train models (GANs) on these datasets
- Generate new geometric art for potential NFT creation
- Multiple geometric style generators (grid, triangle, circle, brutalist, etc.)
- Customizable style parameters
- GAN training with different architectures
- Visualization tools for dataset and generated images
# Set up environment with uv
uv venv
source .venv/bin/activate # On Unix/MacOS
# .venv\Scripts\activate # On Windows
# Install dependencies
uv pip install -r requirements.txt
python -m art_generator.datasets.generate --style grid --count 100 --output datasets/grid
python -m art_generator.train --dataset datasets/grid --output models/grid_model
python -m art_generator.generate --model models/grid_model --count 10 --output generated
- Grid: Structured, Mondrian-like compositions
- Triangles: Angular, tessellated patterns
- Circles: Organic, rounded forms
- Brutalist: Bold, heavy, blocky structures
art_generator/
├── datasets/ # Dataset generation code
│ ├── __init__.py
│ ├── generate.py # Dataset generation script
│ └── styles/ # Different geometric style generators
├── models/ # Model definitions
│ ├── __init__.py
│ ├── gan.py # GAN architecture
│ └── training.py # Training utilities
├── utils/ # Utility functions
│ ├── __init__.py
│ ├── visualization.py # Visualization tools
│ └── config.py # Configuration utilities
└── generate.py # Image generation script
MIT