A minimalist framework to convert and quantize SDXL models to GGUF format
SUSHI-GGUF is a tool that helps you:
- Extract UNet, CLIP, and VAE components from SDXL models
- Convert UNet to GGUF format for optimized inference
- Create quantized versions with reduced precision
git clone --recursive https://github.com/nerdlab53/sushi-gguf.git
cd sushi-gguf
conda create -n sushi-gguf python=3.10
conda activate sushi-gguf
pip install -r requirements.txt
Convert local model
python main.py --model_path /path/to/your/model.safetensors --output_dir ./output
Download and convert from CivitAI
python main.py --civitai --model_name "my_model" --model_version_id "12345" --civitai_token "YOUR_TOKEN"
Specify quantization types
python main.py --model_path /path/to/model.safetensors --quant_types Q5_K_S Q8_0
- Extract model components
- Convert to GGUF format
- Quantize to various precision levels (Q4_K_S, Q5_K_S, Q8_0)
- Download models directly from CivitAI
- Python 3.8+
safetensors
gguf
rich
(for terminal UI)wget
(for downloads)