-
Notifications
You must be signed in to change notification settings - Fork 1
Inverse model for turbidity currents using neural network
License
narusehajime/nninv1d
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
nninv1d ======================== This is a code for inverse analysis of sedimentary processes by using a deep learning neural network. --------------- Installation python setup.py install --------------- How to use Usage of Matlab codes for simulation of turbidity currents -------------- exec_TurbSurge_mltest_new(folder_to_store_results, interval_to_output, time_to_end_simulation, model_input_parameters) Usage of Matlab codes for producing training data sets ------------- exec_TurbSurge_mlsamples(folder_to_output_data, dummy_number, time_to_terminate_a_single_run, number_of_training_data) Usage of NN codes ----------- import nninv1d import os # Load data datadir_training_num = './distance/10/data' resdir_training_num = './result_training_num_10' if not os.path.exists(resdir_training_num): os.mkdir(resdir_training_num) x_train, y_train, x_test, y_test = nninv1d.load_data(datadir_training_num) # Start training testcases_train_num = [500, 1000, 1500, 2000, 2500, 3000, 3500] for i in range(len(testcases_train_num)): resdir_case = os.path.join(resdir_training_num, '{}/'.format(testcases_train_num[i])) if not os.path.exists(resdir_case): os.mkdir(resdir_case) x_train_sub = x_train[0:testcases_train_num[i], :] y_train_sub = y_train[0:testcases_train_num[i], :] model, history = nninv1d.deep_learning_turbidite(resdir_case, x_train_sub, y_train_sub, x_test, y_test, epochs=20000, num_layers=6) # Verification and test model = nninv1d.load_model(os.path.join(resdir_case, 'model.hdf5')) result = nninv1d.test_model(model, x_test) save_result(resdir_case, model=model, history=history, test_result=result)
About
Inverse model for turbidity currents using neural network
Resources
License
Stars
Watchers
Forks
Packages 0
No packages published