limosat is an open source, highly configurable algorithm for calculating sea ice drift from remote sensing imagery. It processes satellite images like so:
- Keypoint Detection: Identify points representing ice features in a semi-constrained grid.
- Interpolation: Interpolate positions for unmatched keypoints using homography.
- Pattern Matching: Refine keypoint positions using template matching and discard points with low correlation.
- Persistent Storage: Optionally save drift data for later analysis.
Chua, S. M. T., & Korosov, A. (2025). limosat - Lagrangian Ice Motion from Satellites (v0.1.0). Zenodo. https://doi.org/10.5281/zenodo.15111936
.
├── LICENSE # MIT License information
├── README.md # Project documentation
├── environment.yaml # Conda environment specification
├── examples/ # Usage examples
├── limosat/ # LiMOSAT library source code
└── tests/ # Tests
conda env create -f environment.yaml && conda activate limosat
- Prepare Your Data:
Organize your satellite imagery into a folder and run
preprocessing.py
. - Build catalog: Use create_image_gdf to build a catalog of imagery metadata.
- Set-up database(optional): Enable persistence by providing a SQL engine and Zarr storage path to store both the drift keypoints and pattern matching templates. limosat can also be run without persistence.
- Run
examples/limosat_drift.ipynb
- Visualise results
This project is licensed under the MIT License. See the LICENSE file for details.