Skip to content

nansencenter/limosat

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Tests DOI

limosat - Lagrangian Ice Motion from Satellites

limosat is an open source, highly configurable algorithm for calculating sea ice drift from remote sensing imagery. It processes satellite images like so:

  1. Keypoint Detection: Identify points representing ice features in a semi-constrained grid.
  2. Interpolation: Interpolate positions for unmatched keypoints using homography.
  3. Pattern Matching: Refine keypoint positions using template matching and discard points with low correlation.
  4. Persistent Storage: Optionally save drift data for later analysis.

Citation

Chua, S. M. T., & Korosov, A. (2025). limosat - Lagrangian Ice Motion from Satellites (v0.1.0). Zenodo. https://doi.org/10.5281/zenodo.15111936

Repository Structure

.
├── LICENSE              # MIT License information
├── README.md            # Project documentation
├── environment.yaml     # Conda environment specification
├── examples/            # Usage examples
├── limosat/             # LiMOSAT library source code
└── tests/               # Tests

Setup Environment

conda env create -f environment.yaml && conda activate limosat

Run limosat

  1. Prepare Your Data: Organize your satellite imagery into a folder and run preprocessing.py.
  2. Build catalog: Use create_image_gdf to build a catalog of imagery metadata.
  3. Set-up database(optional): Enable persistence by providing a SQL engine and Zarr storage path to store both the drift keypoints and pattern matching templates. limosat can also be run without persistence.
  4. Run examples/limosat_drift.ipynb
  5. Visualise results

License

This project is licensed under the MIT License. See the LICENSE file for details.

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages