The project explores the dataset of students performance. The goal is to develop a system that can predict student's math score.
- Data Exploration & Feature Engineering: The project leverages exploratory data analysis (EDA) to uncover insights and identify potential predictors of exam performance. Feature engineering techniques are applied to enhance the dataset for model training.
- Model Training & Optimization: A range of machine learning algorithms are explored, including [specify the algorithms used, e.g., Linear Regression, CatBoost, XGBoost]. The model selection process incorporates GridSearchCV for hyperparameter tuning to achieve optimal performance.
- User-Friendly Web Interface: A Flask-based web application allows users to input student information and receive a predicted exam score. The interface provides a clear and concise presentation of the prediction.
.
├── artifacts/
│ ├── data.csv
│ ├── model.pkl
│ ├── preprocessor.pkl
│ ├── test.csv
│ └── train.csv
├── notebook/
│ ├── eda.ipynb
│ └── model_training.ipynb
├── src/
│ ├── components/
│ │ ├── logs/
│ │ ├── __init__.py
│ │ ├── data_ingestion.py
│ │ ├── data_transformation.py
│ │ └── model_trainer.py
│ ├── pipeline/
│ │ ├── __init__.py
│ │ ├── predict_pipeline.py
│ │ └── train_pipeline.py
│ ├── __init__.py
│ ├── exception.py
│ ├── logger.py
│ └── utils.py
├── templates/
│ └── index.html
├── .gitignore
├── app.py
├── requirements.txt
└── setup.py
- data_transformation.py: Handles data loading, cleaning, and feature engineering tasks.
- model_trainer.py: Implements model training, hyperparameter tuning using GridSearchCV, and model saving.
- utils.py: Contains helper functions for data manipulation.
- app.py: Defines the Flask web application for user interaction and prediction generation.
- model.pkl: Stores the trained machine learning model.
The project was created for educational purposes