Skip to content

nadirg2/ML_project

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

15 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Machine Learning pet-project

The project explores the dataset of students performance. The goal is to develop a system that can predict student's math score.

Project Highlights

  • Data Exploration & Feature Engineering: The project leverages exploratory data analysis (EDA) to uncover insights and identify potential predictors of exam performance. Feature engineering techniques are applied to enhance the dataset for model training.
  • Model Training & Optimization: A range of machine learning algorithms are explored, including [specify the algorithms used, e.g., Linear Regression, CatBoost, XGBoost]. The model selection process incorporates GridSearchCV for hyperparameter tuning to achieve optimal performance.
  • User-Friendly Web Interface: A Flask-based web application allows users to input student information and receive a predicted exam score. The interface provides a clear and concise presentation of the prediction.

Project Structure

.
├── artifacts/
│   ├── data.csv
│   ├── model.pkl
│   ├── preprocessor.pkl
│   ├── test.csv
│   └── train.csv
├── notebook/
│   ├── eda.ipynb
│   └── model_training.ipynb
├── src/
│   ├── components/
│   │   ├── logs/
│   │   ├── __init__.py
│   │   ├── data_ingestion.py
│   │   ├── data_transformation.py
│   │   └── model_trainer.py
│   ├── pipeline/
│   │   ├── __init__.py
│   │   ├── predict_pipeline.py
│   │   └── train_pipeline.py
│   ├── __init__.py
│   ├── exception.py
│   ├── logger.py
│   └── utils.py
├── templates/
│   └── index.html
├── .gitignore
├── app.py
├── requirements.txt
└── setup.py

Key Components

  • data_transformation.py: Handles data loading, cleaning, and feature engineering tasks.
  • model_trainer.py: Implements model training, hyperparameter tuning using GridSearchCV, and model saving.
  • utils.py: Contains helper functions for data manipulation.
  • app.py: Defines the Flask web application for user interaction and prediction generation.
  • model.pkl: Stores the trained machine learning model.

The project was created for educational purposes

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages