A modular R framework for data analysis, data manipulation, and visualization. This library provides functions for handling data, with emphasis on reproducibility and clean code practices.
This framework implements data analysis workflows focusing on:
- Geometric calculations and transformations
- Descriptive statistics and data summarization
- Statistical hypothesis testing
- Data preprocessing and cleaning
- Correlation analysis
# Clone repository
git clone https://github.com/username/r-statistical-analysis.git
# Install required R packages
install.packages(c("stats", "utils", "base"))
.
├── assignment1/
│ ├── assignment1.R # Core statistical functions
│ └── chol.txt # Sample cholesterol dataset
├── assignment2/
│ ├── assignment2.R # Data preprocessing utilities
│ └── Assignment2.RData # Multi-dataset RData file
└── README.md
- Circle and sphere calculations (area, volume, circumference)
- Multi-dimensional geometric transformations
- Configurable precision and rounding
- Descriptive statistics generation
- Two-sample t-test automation
- Missing value handling
- Outlier detection and processing
- Data normalization
- Correlation analysis for metrics
- Categorical data imputation
- Flexible data frame operations
# Calculate circle area
calCircle('ac', 4)
# Multiple calculations
calCircle2(c('AC', 'VS'), seq(5,25,5))
# Generate descriptive statistics
table1(patient_num, c("GLUC", "TGL", "HDL", "LDL"))
# Perform t-tests
myTtest(dat=chol, classVar="sex", numVar=c("age", "chol", "tg"))
# Handle missing values
impute(dat=patient, varlist=c("LDL", "HRT", "MAMM"))
# Calculate correlations
myCorTest(chol, "bmi", c("sbp", "dbp", "vldl", "hdl", "ldl"))
- Fork the repository
- Create your feature branch (
git checkout -b feature/enhancement
) - Commit changes (
git commit -am 'Add enhancement'
) - Push to branch (
git push origin feature/enhancement
) - Create Pull Request
This project is licensed under the MIT License - see LICENSE for details.
If you use this framework in your research, please cite:
@software{r_data_analysis,
author = {Shadman, Nabil},
title = {R Data Analysis Framework},
year = {2020},
url = {https://github.com/nabilshadman/r-data-analysis}
}