Skip to content

This repository contains scripts to visualize Seattle's street network data along with neighborhood boundaries using GeoJSON and CSV files.

Notifications You must be signed in to change notification settings

mzwsInJjq/Seattle-Open-Data-Visualization

Repository files navigation

Seattle Open Data Visualization

This repository contains scripts to visualize Seattle's street network data along with neighborhood boundaries using GeoJSON and CSV files.

Dataset Sources

Requirements

  • pandas
  • geopandas
  • matplotlib

You can install the required libraries using:

pip install pandas geopandas matplotlib

Usage

Script 1: Seattle Street Network and Neighborhood Boundaries

  1. Download the required GeoJSON files:

  2. Update the file paths in the script to point to the downloaded GeoJSON files.

  3. Run the script:

python seattle-snd.py

Script 2: Seattle Street Network, Neighborhood Boundaries, and Building Outlines

  1. Download the required GeoJSON files:

  2. Update the file paths in the script to point to the downloaded GeoJSON files.

  3. Run the script:

python seattle-snd-bo.py

Script 3: Seattle FCC Broadband Data

  1. Download the required GeoJSON and CSV files:

  2. Update the file paths in the script to point to the downloaded GeoJSON and CSV files.

  3. Run the script:

python seattle-fcc-broadband.py

Output

  • seattle-snd.py will generate a seattle-snd.pdf file with the visualization of Seattle's street network and neighborhood boundaries.
  • seattle-snd-bo.py will generate a seattle-snd-bo.pdf file with the visualization of Seattle's street network, neighborhood boundaries, and building outlines.
  • seattle-fcc-broadband.py will generate a seattle-fcc-broadband.pdf file with the visualization of Seattle's broadband data. (Census Tracts-Level)
  • seattle-fcc-broadband-bg.py will generate a seattle-fcc-broadband-bg.pdf file with the visualization of Seattle's broadband data. (Census Block Groups-Level)

Output of seattle-fcc-broadband.py

data.columns: Index(['frn', 'provider_id', 'brand_name', 'location_id', 'technology',
       'max_advertised_download_speed', 'max_advertised_upload_speed',
       'low_latency', 'business_residential_code', 'state_usps', 'block_geoid',
       'h3_res8_id'],
      dtype='object')
census_tracts.columns: Index(['OBJECTID', 'GEOID20', 'GROSS_ACRES', 'LAND_ACRES', 'WATER_ACRES',
       'NAME', 'TRACT_NUMB', 'BASENAME', 'UVDA_AREA', 'CRA_NO', 'CRA_GRP',
       'GEN_ALIAS', 'DETL_NAMES', 'C_DISTRICT', 'geometry'],
      dtype='object')
         GEOID20  max_download_speed_in_tract
0    53033000402                         2000
1    53033000403                         2000
2    53033000700                         8000
3    53033003302                         8000
4    53033003601                         2000
..           ...                          ...
172  53033008101                        10000
173  53033010401                         2000
174  53033011401                         2000
175  53033011700                         2000
176  53033011901                         2000

[177 rows x 2 columns]
[  2000   8000   1200  10000 100000   6000 400000]

Output of seattle-fcc-broadband-bg.py

data.columns: Index(['frn', 'provider_id', 'brand_name', 'location_id', 'technology',
       'max_advertised_download_speed', 'max_advertised_upload_speed',
       'low_latency', 'business_residential_code', 'state_usps', 'block_geoid',
       'h3_res8_id'],
      dtype='object')
census_block_groups.columns: Index(['OBJECTID', 'GEOID20', 'GROSS_ACRES', 'ACRES_LAND', 'ACRES_WATER',
       'TRBG', 'NAMELSAD', 'BG', 'TRACT', 'TRACT_LABEL', 'Shape__Area',
       'Shape__Length', 'geometry'],
      dtype='object')
          GEOID20  max_download_speed_in_tract
0    530330002021                       2000.0
1    530330002022                       2000.0
2    530330004022                       2000.0
3    530330013003                       2000.0
4    530330017013                       2000.0
..            ...                          ...
531  530330074042                       2000.0
532  530330080033                       2000.0
533  530330091001                       8000.0
534  530330092002                       8000.0
535  530330104013                       2000.0

[536 rows x 2 columns]
[  2000.   8000.     nan  10000.   6000.   5000. 100000.   1200.   1500.
 400000.]

About

This repository contains scripts to visualize Seattle's street network data along with neighborhood boundaries using GeoJSON and CSV files.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages