Skip to content

mtuann/machine-unlearning-papers

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

71 Commits
 
 

Repository files navigation

Table of Contents

  1. Machine Unlearning Papers
  2. Other Research Topics
  3. Machine Unlearning Papers with Code
  4. Data Sources
  5. Contributing
  6. Support

Machine Unlearning Papers

This GitHub repository contains an updated list of Machine Unlearning papers as of September 14, 2025.

Overview

  • Total Papers: Updated regularly with latest publications
  • Coverage: Papers from 2016 to present
  • Sources: Collected from arXiv, NeurIPS, ICML, ICLR, ACL, EMNLP, AAAI, IJCAI, KDD, CVPR, ICCV, ECCV, IEEE, ACM, Springer, ScienceDirect, Nature, and other top AI/ML conferences and journals
  • Interactive Search: For a better reading experience, visit the Shinyapps website

Key Features

  • 📊 Comprehensive Coverage: Papers from major AI/ML venues
  • 🔍 Advanced Search: Filter by title, author, venue, year
  • 📅 Regular Updates: Automated collection of new papers
  • 💻 Code Availability: Identifies papers with available code
  • 📈 Trending Research: Focus on cutting-edge developments

Other Research Topics

Explore additional research papers on the following topics:

Machine Learning & AI

Computing & Systems

Interactive Platforms


Data Sources

The papers are collected from the following sources:

Academic Databases

  • arXiv (1991-present) - Preprints and published papers
  • OpenReview - Conference submissions and peer reviews
  • ACM Digital Library - Computer science publications
  • Springer - Academic journals and conferences
  • ScienceDirect - Elsevier publications
  • Nature - High-impact research papers
  • DBLP - Computer science bibliography
  • Google Scholar - Academic search engine
  • CrossRef - DOI registration agency
  • OpenAlex - Open scholarly data

Major Conferences & Journals

  • Machine Learning: NeurIPS, ICML, ICLR, JMLR, TMLR
  • Natural Language Processing: ACL, EMNLP, NAACL, COLING
  • Computer Vision: CVPR, ICCV, ECCV, PAMI, IJCV
  • Artificial Intelligence: AAAI, IJCAI, AAMAS
  • Data Mining: KDD, ICDM, SDM, TKDD
  • Security & Privacy: CCS, USENIX Security, NDSS
  • And many more...

Machine Unlearning Papers with Code

Due to GitHub repository limitations, this section includes only those papers that provide accompanying code, sorted by publication date. For access to the full list of papers, please visit the Shinyapps website.


Contributing

We welcome contributions to improve this paper collection:

How to Contribute

  1. Add Missing Papers: Submit papers that should be included
  2. Improve Metadata: Help enhance paper information
  3. Report Issues: Identify bugs or missing features
  4. Suggest Improvements: Propose new features or enhancements

Contact Information


Support

If you find this application helpful and would like to support its development, you can buy me a coffee using one of the following methods:

Payment Methods

Why Support?

Your support helps maintain and improve:

  • 🤖 Automated paper collection pipeline
  • 🌐 Interactive web application
  • 📊 Regular data updates
  • 🔧 System maintenance and improvements
  • 📚 New research area coverage

Note: This repository is regularly updated with new papers. For the most current data, check the Shinyapps website or the individual topic repositories linked above.

No. Title Authors Publish Date Venue Code URL
1 Training wide residual networks for deployment using a single bit for each weight Mark D. McDonnell OpenReview CatalyzeX 4 code implementations https://openreview.net/pdf/861cb006a62eb71925571a5d4979901d047a92ea.pdf
2 Multitask Soft Option Learning Maximilian Igl, Andrew Gambardella, Jinke He, Nantas Nardelli, N. Siddharth, Wendelin Böhmer, Shimon Whiteson OpenReview CatalyzeX 1 code implementation https://openreview.net/pdf/5e7c12118369a575ab52f9fb553689c36468b080.pdf
3 Compressed Sensing with Deep Image Prior and Learned Regularization Dave Van Veen, Ajil Jalal, Mahdi Soltanolkotabi, Eric Price, Sriram Vishwanath, Alexandros G. Dimakis OpenReview CatalyzeX 2 code implementations https://openreview.net/pdf/960068efdade58de64b1b641bcccfdba53ac168b.pdf
4 Leveraging Distribution Matching to Make Approximate Machine Unlearning Faster Junaid Iqbal Khan 2025-07-01 arXiv https://github.com/algebraicdianuj/DC_Unlearning. https://doi.org/10.48550/arXiv.2507.09786
5 Image Can Bring Your Memory Back: A Novel Multi-Modal Guided Attack against Image Generation Model Unlearning Renyang Liu, Guanlin Li, Tianwei Zhang, See-Kiong Ng 2025-07-01 arXiv https://github.com/ryliu68/RECALL https://doi.org/10.48550/arXiv.2507.07139
6 Do LLMs Really Forget? Evaluating Unlearning with Knowledge Correlation and Confidence Awareness Rongzhe Wei, Peizhi Niu, Hans Hao-Hsun Hsu, Ruihan Wu, Haoteng Yin, Mohsen Ghassemi, Yifan Li, Vamsi K. Potluru, Eli Chi... 2025-06-01 arXiv https://github.com/Graph-COM/Knowledge_Unlearning.git. https://doi.org/10.48550/arXiv.2506.05735
7 Unlearning Isn't Invisible: Detecting Unlearning Traces in LLMs from Model Outputs Yiwei Chen, Soumyadeep Pal, Yimeng Zhang, Qing Qu, Sijia Liu 2025-06-01 arXiv https://github.com/OPTML-Group/Unlearn-Trace. http://arxiv.org/abs/2506.14003v2
8 Forget-MI: Machine Unlearning for Forgetting Multimodal Information in Healthcare Settings Shahad Hardan, Darya Taratynova, Abdelmajid Essofi, Karthik Nandakumar, Mohammad Yaqub 2025-06-01 arXiv https://github.com/BioMedIA-MBZUAI/Forget-MI.git https://doi.org/10.48550/arXiv.2506.23145
9 Unlearning Sensitive Information in Multimodal LLMs: Benchmark and Attack-Defense Evaluation Vaidehi Patil, Yi-Lin Sung, Peter Hase, Jie Peng, Tianlong Chen, Mohit Bansal 2025-05-01 Trans. Mach. Learn. Res. https://github.com/Vaidehi99/UnLOK-VQA https://openreview.net/forum?id=YcnjgKbZQS
10 Unlearning Isn't Deletion: Investigating Reversibility of Machine Unlearning in LLMs Xiaoyu Xu, Xiang Yue, Yang Liu, Qingqing Ye, Haibo Hu, Minxin Du 2025-05-01 arXiv https://github.com/XiaoyuXU1/Representational_Analysis_Tools.git. http://arxiv.org/abs/2505.16831v1
11 Unlearning for Federated Online Learning to Rank: A Reproducibility Study Yiling Tao, Shuyi Wang, Jiaxi Yang, Guido Zuccon 2025-05-01 Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval https://github.com/Iris1026/Unlearning-for-FOLTR.git. https://doi.org/10.48550/arXiv.2505.12791
12 LoRA Unlearns More and Retains More (Student Abstract) Atharv Mittal 2025-04-11 Proceedings of the AAAI Conference on Artificial Intelligence https://github.com/vlgiitr/LoRA-Unlearn. https://doi.org/10.1609/aaai.v39i28.35277
13 LLM Unlearning Reveals a Stronger-Than-Expected Coreset Effect in Current Benchmarks Soumyadeep Pal, Changsheng Wang, James Diffenderfer, Bhavya Kailkhura, Sijia Liu 2025-04-01 arXiv https://github.com/OPTML-Group/MU-Coreset. https://doi.org/10.48550/arXiv.2504.10185
14 Multi-Objective Large Language Model Unlearning Zibin Pan, Shuwen Zhang, Yuesheng Zheng, Chi Li, Yuheng Cheng, Junhua Zhao 2025-03-12 ICASSP 2022 - 2022 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) https://github.com/zibinpan/MOLLM. https://doi.org/10.1109/icassp49660.2025.10889776
15 Machine Unlearning in Hyperbolic vs. Euclidean Multimodal Contrastive Learning: Adapting Alignment Calibration to MERU Àlex Pujol Vidal, Sergio Escalera, Kamal Nasrollahi, Thomas B. Moeslund 2025-03-01 CVPR Workshops https://github.com/alex-pv01/HAC https://openaccess.thecvf.com/content/CVPR2025W/TMM-OpenWorld/html/Vidal_Machine_Unlearning_in_Hyperbolic_vs._Euclidean_Multimodal_Contrastive_Learning_Adapting_CVPRW_2025_paper.html
16 MMUNLEARNER: Reformulating Multimodal Machine Unlearning in the Era of Multimodal Large Language Models Jiahao Huo, Yibo Yan, Xu Zheng, Yuanhuiyi Lyu, Xin Zou, Zhihua Wei, Xuming Hu 2025-02-16 Findings of the Association for Computational Linguistics: ACL 2022 https://github.com/Z1zs/MMUnlearner https://doi.org/10.18653/v1/2025.findings-acl.375
17 Knowledge Swapping via Learning and Unlearning Mingyu Xing, Lechao Cheng, Shengeng Tang, Yaxiong Wang, Zhun Zhong, Meng Wang 2025-02-11 arXiv https://github.com/xingmingyu123456/KnowledgeSwapping https://doi.org/10.48550/arXiv.2502.08075
18 Towards LLM Unlearning Resilient to Relearning Attacks: A Sharpness-Aware Minimization Perspective and Beyond Chongyu Fan, Jinghan Jia, Yihua Zhang, Anil Ramakrishna, Mingyi Hong, Sijia Liu 2025-02-07 arXiv https://github.com/OPTML-Group/Unlearn-Smooth. https://doi.org/10.48550/arXiv.2502.05374
19 Forgetting Any Data at Any Time: A Theoretically Certified Unlearning Framework for Vertical Federated Learning Linian Wang, Leye Wang 2025-02-01 arXiv https://github.com/wangln19/vertical-federated-unlearning. https://doi.org/10.48550/arXiv.2502.17081
20 ZJUKLAB at SemEval-2025 Task 4: Unlearning via Model Merging Haoming Xu, Shuxun Wang, Yanqiu Zhao, Yi Zhong, Ziyan Jiang, Ningyuan Zhao, Shumin Deng, Huajun Chen, Ningyu Zhang 2025-01-01 arXiv https://github.com/zjunlp/unlearn https://doi.org/10.48550/arXiv.2503.21088
21 Pre-training for Recommendation Unlearning Guoxuan Chen, Lianghao Xia, Chao Huang 2025-01-01 Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval https://github.com/HKUDS/UnlearnRec. https://doi.org/10.48550/arXiv.2505.22649
22 Vertical Federated Unlearning via Backdoor Certification Mengde Han, Tianqing Zhu, Lefeng Zhang, Huan Huo, Wanlei Zhou 2025-01-01 IEEE Transactions on Services Computing https://github.com/mengde-han/VFL-unlearn. https://doi.org/10.48550/arXiv.2412.11476
23 Unlearning Personal Data from a Single Image Thomas De Min, Massimiliano Mancini, Stéphane Lathuilière, Subhankar Roy, Elisa Ricci 2025-01-01 Trans. Mach. Learn. Res. https://github.com/tdemin16/one-shui. https://openreview.net/forum?id=VxC4PZ71Ym
24 UPCORE: Utility-Preserving Coreset Selection for Balanced Unlearning Vaidehi Patil, Elias Stengel-Eskin, Mohit Bansal 2025-01-01 arXiv https://github.com/Vaidehi99/UPCORE https://doi.org/10.48550/arXiv.2502.15082
25 Towards Robust and Parameter-Efficient Knowledge Unlearning for LLMs Sungmin Cha, Sungjun Cho, Dasol Hwang, Moontae Lee 2025-01-01 ICLR https://github.com/csm9493/efficient-llm-unlearning. https://openreview.net/forum?id=1ExfUpmIW4
26 SAeUron: Interpretable Concept Unlearning in Diffusion Models with Sparse Autoencoders Bartosz Cywiński, Kamil Rafał Deja 2025-01-01 arXiv https://github.com/cywinski/SAeUron. https://doi.org/10.48550/arXiv.2501.18052
27 Rethinking Machine Unlearning in Image Generation Models Renyang Liu, Wenjie Feng, Tianwei Zhang, Wei Zhou, Xueqi Cheng, See-Kiong Ng 2025-01-01 ACM Conference on Computer and Communications Security (CCS 2025) https://github.com/ryliu68/IGMU. https://doi.org/10.48550/arXiv.2506.02761
28 ReLearn: Unlearning via Learning for Large Language Models Haoming Xu, Ningyuan Zhao, Liming Yang, Sendong Zhao, Shumin Deng, Mengru Wang, Bryan Hooi, Nay Oo, Huajun Chen, Ningyu ... 2025-01-01 OpenAlex https://github.com/zjunlp/unlearn. https://doi.org/10.18653/v1/2025.acl-long.297
29 WaterDrum: Watermarking for Data-centric Unlearning Metric Xinyang Lu, Xinyuan Niu, Gregory Kang Ruey Lau, Bui Thi Cam Nhung, Rachael Hwee Ling Sim, Fanyu Wen, Chuan-Sheng Foo, Se... 2025-01-01 arXiv https://github.com/lululu008/WaterDrum https://doi.org/10.48550/arXiv.2505.05064
30 Provably Unlearnable Data Examples Derui Wang, Minhui Xue, Bo Li, Seyit Camtepe, Liming Zhu, Derui Wang 2025-01-01 OpenAlex https://github.com/NeuralSec/certified-data-learnability https://www.ndss-symposium.org/ndss-paper/provably-unlearnable-data-examples/
31 LoTUS: Large-Scale Machine Unlearning with a Taste of Uncertainty Christoforos N. Spartalis, Theodoros Semertzidis, Efstratios Gavves, Petros Daras 2025-01-01 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://github.com/cspartalis/LoTUS. https://openaccess.thecvf.com/content/CVPR2025/html/Spartalis_LoTUS_Large-Scale_Machine_Unlearning_with_a_Taste_of_Uncertainty_CVPR_2025_paper.html
32 Backdoor Token Unlearning: Exposing and Defending Backdoors in Pretrained Language Models Peihai Jiang, Xixiang Lyu, Yige Li, Jing Ma 2025-01-01 Proceedings of the AAAI Conference on Artificial Intelligence https://github.com/XDJPH/BTU. https://doi.org/10.1609/aaai.v39i23.34605
33 A Survey on Unlearnable Data Jiahao Li, Yiqiang Chen, Yunbing Xing, Yang Gu, Xiangyuan Lan 2025-01-01 arXiv https://github.com/LiJiahao-Alex/Awesome-UnLearnable-Data https://doi.org/10.48550/arXiv.2503.23536
34 Align-then-Unlearn: Embedding Alignment for LLM Unlearning Philipp Spohn, Leander Girrbach, Jessica Bader, Zeynep Akata 2025-01-01 arXiv https://github.com/ExplainableML/align-then-unlearn. https://doi.org/10.48550/arXiv.2506.13181
35 Group-robust Machine Unlearning Thomas De Min, Subhankar Roy, Stéphane Lathuilière, Elisa Ricci, Massimiliano Mancini 2025-01-01 arXiv https://github.com/tdemin16/group-robust_machine_unlearning. https://doi.org/10.48550/arXiv.2503.09330
36 An Information Theoretic Approach to Machine Unlearning Jack Foster, Kyle Fogarty, Stefan Schoepf, Zack Dugue, Cengiz Öztireli, Alexandra Brintrup 2025-01-01 Trans. Mach. Learn. Res. https://github.com/jwf40/Information-Theoretic-Unlearning https://openreview.net/forum?id=t1utIThKHD
37 BLUR: A Bi-Level Optimization Approach for LLM Unlearning Hadi Reisizadeh, Jinghan Jia, Zhiqi Bu, Bhanukiran Vinzamuri, Anil Ramakrishna, Kai-Wei Chang, Volkan Cevher, Sijia Liu,... 2025-01-01 arXiv https://github.com/OptimAI-Lab/BLURLLMUnlearning. https://doi.org/10.48550/arXiv.2506.08164
38 On Large Language Model Continual Unlearning Chongyang Gao, Lixu Wang, Kaize Ding, Chenkai Weng, Xiao Wang, Qi Zhu 2025-01-01 ICLR https://github.com/GCYZSL/O3-LLM-UNLEARNING. https://openreview.net/forum?id=Essg9kb4yx
39 Catastrophic Failure of LLM Unlearning via Quantization Zhiwei Zhang, Fali Wang, Xiaomin Li, Zongyu Wu, Xianfeng Tang, Hui Liu, Qi He, Wenpeng Yin, Suhang Wang 2025-01-01 ICLR https://github.com/zzwjames/FailureLLMUnlearning https://openreview.net/forum?id=lHSeDYamnz
40 Certified Unlearning for Neural Networks Anastasia Koloskova, Youssef Allouah, Animesh Jha, Rachid Guerraoui, Sanmi Koyejo 2025-01-01 arXiv https://github.com/stair-lab/certified-unlearning-neural-networks-icml-2025 https://doi.org/10.48550/arXiv.2506.06985
41 Effective Skill Unlearning through Intervention and Abstention Yongce Li, Chung-En Sun, Tsui-Wei Weng 2025-01-01 OpenAlex https://github.com/Trustworthy-ML-Lab/effective_skill_unlearning https://doi.org/10.18653/v1/2025.naacl-long.322
42 Efficient Unlearning with Privacy Guarantees Josep Domingo-Ferrer, Najeeb Jebreel, David Sánchez 2025-01-01 arXiv https://github.com/najeebjebreel/EUPG. https://doi.org/10.48550/arXiv.2507.04771
43 Exploring Criteria of Loss Reweighting to Enhance LLM Unlearning Puning Yang, Qizhou Wang, Zhuo Huang, Tongliang Liu, Chengqi Zhang, Bo Han 2025-01-01 arXiv https://github.com/tmlr-group/SatImp. https://doi.org/10.48550/arXiv.2505.11953
44 Forget Vectors at Play: Universal Input Perturbations Driving Machine Unlearning in Image Classification Changchang Sun, Ren Wang, Yihua Zhang, Jinghan Jia, Jiancheng Liu, Gaowen Liu, Sijia Liu, Yan Yan 2024-12-21 arXiv https://github.com/Changchangsun/Forget-Vector. https://doi.org/10.48550/arXiv.2412.16780
45 A Cognac Shot To Forget Bad Memories: Corrective Unlearning for Graph Neural Networks Varshita Kolipaka, Akshit Sinha, Debangan Mishra, Sumit Kumar, Arvindh Arun, Shashwat Goel, Ponnurangam Kumaraguru 2024-12-01 arXiv https://github.com/cognac-gnn-unlearning/corrective-unlearning-for-gnns http://arxiv.org/abs/2412.00789v4
46 Delta-Influence: Unlearning Poisons via Influence Functions Wenjie Li, Jiawei Li, Christian Schroeder de Witt, Ameya Prabhu, Amartya Sanyal 2024-11-20 arXiv https://github.com/andyisokay/delta-influence https://doi.org/10.48550/arXiv.2411.13731
47 Does Unlearning Truly Unlearn? A Black Box Evaluation of LLM Unlearning Methods Jai Doshi, Asa Cooper Stickland 2024-11-18 arXiv https://github.com/JaiDoshi/Knowledge-Erasure. https://doi.org/10.48550/arXiv.2411.12103
48 Identify Backdoored Model in Federated Learning via Individual Unlearning Jiahao Xu, Zikai Zhang, Rui Hu 2024-11-01 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) https://github.com/JiiahaoXU/MASA https://doi.org/10.1109/WACV61041.2025.00773
49 Learning from Convolution-based Unlearnable Datasets Dohyun Kim, Pedro Sandoval-Segura 2024-11-01 arXiv https://github.com/aseriesof-tubes/RSK https://doi.org/10.48550/arXiv.2411.01742
50 Evaluating Deep Unlearning in Large Language Models Ruihan Wu, Chhavi Yadav, Russ R. Salakhutdinov, Kamalika Chaudhuri 2024-10-19 arXiv https://github.com/wrh14/deep_unlearning. https://doi.org/10.48550/arXiv.2410.15153
51 Meta-Unlearning on Diffusion Models: Preventing Relearning Unlearned Concepts Hongcheng Gao, Tianyu Pang, Chao Du, Taihang Hu, Zhijie Deng, Min Lin 2024-10-16 arXiv https://github.com/sail-sg/Meta-Unlearning. https://doi.org/10.48550/arXiv.2410.12777
52 Dissecting Fine-Tuning Unlearning in Large Language Models Yihuai Hong, Yuelin Zou, Lijie Hu, Ziqian Zeng, Di Wang, Haiqin Yang 2024-10-09 Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing https://github.com/yihuaihong/Dissecting-FT-Unlearning. https://doi.org/10.18653/v1/2024.emnlp-main.228
53 A Probabilistic Perspective on Unlearning and Alignment for Large Language Models Yan Scholten, Stephan Günnemann, Leo Schwinn 2024-10-04 arXiv https://github.com/yascho/probabilistic-unlearning https://openreview.net/forum?id=51WraMid8K
54 NegMerge: Sign-Consensual Weight Merging for Machine Unlearning Hyo Seo Kim, Dongyoon Han, Junsuk Choe 2024-10-01 arXiv https://github.com/naver-ai/negmerge. http://arxiv.org/abs/2410.05583v2
55 Simplicity Prevails: Rethinking Negative Preference Optimization for LLM Unlearning Chongyu Fan, Liu Jian-cheng, Licong Lin, Jinghan Jia, Ruiqi Zhang, Mei Song, Sijia Liu 2024-10-01 arXiv https://github.com/OPTML-Group/Unlearn-Simple. https://doi.org/10.48550/arXiv.2410.07163
56 Alternate Preference Optimization for Unlearning Factual Knowledge in Large Language Models Anmol Reddy Mekala, Vineeth Dorna, Shreya Dubey, Abhishek Lalwani, David Koleczek, Mukund Rungta, Sadid A. Hasan, Elita ... 2024-09-20 https://github.com/molereddy/Alternate-Preference-Optimization. https://aclanthology.org/2025.coling-main.252/
57 Score Forgetting Distillation: A Swift, Data-Free Method for Machine Unlearning in Diffusion Models Tianqi Chen, Shujian Zhang, Mingyuan Zhou 2024-09-17 arXiv https://github.com/tqch/score-forgetting-distillation. https://openreview.net/forum?id=gjwhDHeAsz
58 CURE4Rec: A Benchmark for Recommendation Unlearning with Deeper Influence Chaochao Chen, Jiaming Zhang, Yizhao Zhang, Li Zhang, Lingjuan Lyu, Yuyuan Li, Biao Gong, Chenggang Yan 2024-08-26 NeurIPS https://github.com/xiye7lai/CURE4Rec. http://papers.nips.cc/paper_files/paper/2024/hash/b364953e402d7d92e13830383677efb5-Abstract-Datasets_and_Benchmarks_Track.html
59 Scalable and Certifiable Graph Unlearning: Overcoming the Approximation Error Barrier Lu Yi, Zhewei Wei 2024-08-01 ICLR https://github.com/luyi256/ScaleGUN. https://openreview.net/forum?id=pPyJyeLriR
60 Multimodal Unlearnable Examples: Protecting Data against Multimodal Contrastive Learning Xinwei Liu, Xiaojun Jia, Yuan Xun, Siyuan Liang, Xiaochun Cao 2024-07-23 ACM Multimedia https://github.com/thinwayliu/Multimodal-Unlearnable-Examples https://doi.org/10.48550/arXiv.2407.16307
61 Safe Unlearning: A Surprisingly Effective and Generalizable Solution to Defend Against Jailbreak Attacks Zhexin Zhang, Junxiao Yang, Pei Ke, Shiyao Cui, Chujie Zheng, Hongning Wang, Minlie Huang 2024-07-03 arXiv https://github.com/thu-coai/SafeUnlearning https://doi.org/10.48550/arXiv.2407.02855
62 Enable the Right to be Forgotten with Federated Client Unlearning in Medical Imaging Zhipeng Deng, Luyang Luo, Hao Chen 2024-07-02 Lecture notes in computer science https://github.com/dzp2095/FCU. https://doi.org/10.1007/978-3-031-72117-5_23
63 From Theft to Bomb-Making: The Ripple Effect of Unlearning in Defending Against Jailbreak Attacks Zhexin Zhang, Junxiao Yang, Yida Lu, Pei Ke, Shiyao Cui, Chujie Zheng, Hongning Wang, Minlie Huang 2024-07-01 arXiv https://github.com/thu-coai/SafeUnlearning. http://arxiv.org/abs/2407.02855v3
64 Targeted Unlearning with Single Layer Unlearning Gradient Zikui Cai, Yaoteng Tan, M. Salman Asif 2024-07-01 arXiv https://github.com/CSIPlab/SLUG. http://arxiv.org/abs/2407.11867v3
65 To Forget or Not? Towards Practical Knowledge Unlearning for Large Language Models Bozhong Tian, Xiaozhuan Liang, Siyuan Cheng, Qingbin Liu, Mengru Wang, Dianbo Sui, Xi Chen, Huajun Chen, Ningyu Zhang 2024-07-01 OpenAlex https://github.com/zjunlp/KnowUnDo. https://doi.org/10.18653/v1/2024.findings-emnlp.82
66 Data Attribution for Text-to-Image Models by Unlearning Synthesized Images Sheng-Yu Wang, Aaron Hertzmann, Alexei A. Efros, Jun-Yan Zhu, Richard Zhang 2024-06-13 NeurIPS https://github.com/PeterWang512/AttributeByUnlearning http://papers.nips.cc/paper_files/paper/2024/hash/07fbde96bee50f4e09303fd4f877c2f3-Abstract-Conference.html
67 Reversing the Forget-Retain Objectives: An Efficient LLM Unlearning Framework from Logit Difference Jiabao Ji, Yujian Liu, Yang Zhang, Gaowen Liu, Ramana Rao Kompella, Sijia Liu, Shiyu Chang 2024-06-12 NeurIPS https://github.com/UCSB-NLP-Chang/ULD. http://papers.nips.cc/paper_files/paper/2024/hash/171291d8fed723c6dfc76330aa827ff8-Abstract-Conference.html
68 MUC: Machine Unlearning for Contrastive Learning with Black-box Evaluation Yihan Wang, Yiwei Lu, Guojun Zhang, Franziska Boenisch, Adam Dziedzic, Yaoliang Yu, Xiao-Shan Gao 2024-06-01 Trans. Mach. Learn. Res. https://github.com/EhanW/Alignment-Calibration. https://openreview.net/forum?id=F9pjSDvuM9
69 Intrinsic Evaluation of Unlearning Using Parametric Knowledge Traces Yihuai Hong, Lei Yu, Haiqin Yang, Shauli Ravfogel, Mor Geva 2024-06-01 arXiv https://github.com/yihuaihong/ConceptVectors. https://doi.org/10.48550/arXiv.2406.11614
70 Defensive Unlearning with Adversarial Training for Robust Concept Erasure in Diffusion Models Yimeng Zhang, Xin Chen, Jinghan Jia, Yihua Zhang, Chongyu Fan, Jiancheng Liu, Mingyi Hong, Ke Ding, Sijia Liu 2024-05-24 NeurIPS https://github.com/OPTML-Group/AdvUnlearn http://papers.nips.cc/paper_files/paper/2024/hash/40954ac18a457dd5f11145bae6454cdf-Abstract-Conference.html
71 Unlearning during Learning: An Efficient Federated Machine Unlearning Method Hanlin Gu, Gongxi Zhu, Jie Zhang, Xinyuan Zhao, Yuxing Han, Lixin Fan, Qiang Yang 2024-05-24 OpenAlex https://github.com/Liar-Mask/FedAU. https://www.ijcai.org/proceedings/2024/446
72 Erasing Concepts from Text-to-Image Diffusion Models with Few-shot Unlearning Masane Fuchi, Tomohiro Takagi 2024-05-12 BMVC https://github.com/fmp453/few-shot-erasing https://doi.org/10.48550/arXiv.2405.07288
73 Purify Unlearnable Examples via Rate-Constrained Variational Autoencoders Yi Yu, Yu-Fei Wang, Song Xia, Wenhan Yang, Shijian Lu, Yap‐Peng Tan, Alex C. Kot 2024-05-02 ICML https://github.com/yuyi-sd/D-VAE. https://openreview.net/forum?id=0LBNdbmQCM
74 Ferrari: Federated Feature Unlearning via Optimizing Feature Sensitivity Hanlin Gu, Win Kent Ong, Chee Seng Chan, Lixin Fan 2024-05-01 NeurIPS https://github.com/OngWinKent/Federated-Feature-Unlearning http://papers.nips.cc/paper_files/paper/2024/hash/2b09bb02b90584e2be94ff3ae09289bc-Abstract-Conference.html
75 Fast-FedUL: A Training-Free Federated Unlearning with Provable Skew Resilience Thanh Trung Huynh, Trong Bang Nguyen, Phi Le Nguyen, Thanh Tam Nguyen, Matthias Weidlich, Quoc Viet Hung Nguyen, Karl Ab... 2024-05-01 Lecture notes in computer science https://github.com/thanhtrunghuynh93/fastFedUL https://doi.org/10.1007/978-3-031-70362-1_4
76 Multi-Modal Recommendation Unlearning for Legal, Licensing, and Modality Constraints Yash Sinha, Murari Mandal, Mohan S. Kankanhalli 2024-05-01 https://github.com/MachineUnlearn/MMRecUN https://doi.org/10.1609/aaai.v39i12.33367
77 SOUL: Unlocking the Power of Second-Order Optimization for LLM Unlearning Jinghan Jia, Yihua Zhang, Yimeng Zhang, Jiancheng Liu, Bharat Runwal, James Diffenderfer, Bhavya Kailkhura, Sijia Liu 2024-04-28 Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing https://github.com/OPTML-Group/SOUL. https://doi.org/10.18653/v1/2024.emnlp-main.245
78 Eraser: Jailbreaking Defense in Large Language Models via Unlearning Harmful Knowledge Weikai Lu, Ziqian Zeng, Jianwei Wang, Zhengdong Lu, Zelin Chen, Huiping Zhuang, Cen Chen 2024-04-08 OpenReview https://github.com/ZeroNLP/Eraser. https://openreview.net/pdf/56792e044282ec46ecc14cfd3f68de33ed880b8e.pdf
79 Machine Unlearning for Document Classification Lei Kang, Mohamed Ali Souibgui, Fei Yang, Lluis Gomez, Ernest Valveny, Dimosthenis Karatzas 2024-04-01 Lecture notes in computer science https://github.com/leitro/MachineUnlearning-DocClassification https://doi.org/10.1007/978-3-031-70546-5_6
80 Towards Efficient and Effective Unlearning of Large Language Models for Recommendation Hangyu Wang, Jianghao Lin, Bo Chen, Yang Yang, Ruiming Tang, Weinan Zhang, Yong Yu 2024-03-06 Frontiers of Computer Science https://github.com/justarter/E2URec https://doi.org/10.1007/s11704-024-40044-2
81 Towards Lifecycle Unlearning Commitment Management: Measuring Sample-level Approximate Unlearning Completeness Cheng-Long Wang, Qi Li, Zihang Xiang, Yinzhi Cao, Di Wang 2024-03-01 arXiv https://github.com/Happy2Git/Unlearning_Inference_IAM. https://doi.org/10.48550/arXiv.2506.06112
82 Challenging Forgets: Unveiling the Worst-Case Forget Sets in Machine Unlearning Chongyu Fan, Jiancheng Liu, Alfred Olivier Hero, Sijia Liu 2024-03-01 Lecture notes in computer science https://github.com/OPTML-Group/Unlearn-WorstCase. https://doi.org/10.1007/978-3-031-72664-4_16
83 UnlearnCanvas: A Stylized Image Dataset to Benchmark Machine Unlearning for Diffusion Models Yihua Zhang, Yimeng Zhang, Yuguang Yao, Jinghan Jia, Jiancheng Liu, Xiaoming Liu, Sijia Liu 2024-02-19 arXiv https://github.com/OPTML-Group/UnlearnCanvas. https://doi.org/10.48550/arXiv.2402.11846
84 Machine Unlearning for Image-to-Image Generative Models Guihong Li, Hsiang Hsu, Chun-Fu, Chen, Diana Marculescu 2024-01-01 ICLR https://github.com/jpmorganchase/l2l-generator-unlearning. https://openreview.net/forum?id=9hjVoPWPnh
85 Unlearnable 3D Point Clouds: Class-wise Transformation Is All You Need Xianlong Wang, Minghui Li, Weiping Liu, Hangtao Zhang, Shengshan Hu, Yechao Zhang, Ziqi Zhou, Hai Jin 2024-01-01 NeurIPS https://github.com/CGCL-codes/UnlearnablePC http://papers.nips.cc/paper_files/paper/2024/hash/b3d868b4b5b61b35a849ba6e7a1d4449-Abstract-Conference.html
86 Soft Prompting for Unlearning in Large Language Models Karuna Bhaila, Minh-Hao Van, Xintao Wu 2024-01-01 OpenAlex https://github.com/karuna-bhaila/llm_unlearning https://doi.org/10.18653/v1/2025.naacl-long.204
87 Revisiting Who's Harry Potter: Towards Targeted Unlearning from a Causal Intervention Perspective Yujian Liu, Yang Zhang, Tommi S. Jaakkola, Shiyu Chang 2024-01-01 Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing https://github.com/UCSB-NLP-Chang/causal_unlearn.git. https://doi.org/10.18653/v1/2024.emnlp-main.495
88 Machine Unlearning via Representation Forgetting With Parameter Self-Sharing Weiqi Wang, Chenhan Zhang, Zhiyi Tian, Shui Yu 2024-01-01 IEEE Transactions on Information Forensics and Security https://github.com/wwq5-code/RFU-SS.git. https://doi.org/10.1109/TIFS.2023.3331239
89 Machine Unlearning via Null Space Calibration Huiqiang Chen, Tianqing Zhu, Xinjie Yu, Wanlei Zhou 2024-01-01 OpenAlex https://github.com/HQC-ML/Machine-Unlearning-via-Null-Space-Calibration https://www.ijcai.org/proceedings/2024/40
90 Machine Unlearning of Pre-trained Large Language Models Jin Yao, Eli Chien, Minxin Du, Xinyao Niu, Tianhao Wang, Zezhou Cheng, Xiang Yue 2024-01-01 OpenReview https://github.com/yaojin17/Unlearning_LLM https://openreview.net/pdf/fe1970154c67c30db5b9431d2efc8b5d8ece2dee.pdf
91 Machine Unlearning in Generative AI: A Survey Zheyuan Liu, Guangyao Dou, Zhaoxuan Tan, Yijun Tian, Meng Jiang 2024-01-01 arXiv https://github.com/franciscoliu/GenAI-MU-Reading. https://doi.org/10.48550/arXiv.2407.20516
92 Breaking the Trilemma of Privacy, Utility, and Efficiency via Controllable Machine Unlearning Zheyuan Liu, Guangyao Dou, Wang-Chien Chen, Chunhui Zhang, Yijun Tian, Ziwei Zhu 2024-01-01 Proceedings of the ACM Web Conference 2022 https://github.com/guangyaodou/ConMU. https://doi.org/10.48550/arXiv.2310.18574
93 Large Language Model Unlearning via Embedding-Corrupted Prompts Chris Yuhao Liu, Yaxuan Wang, Jeffrey Flanigan, Yang Liu 2024-01-01 NeurIPS https://github.com/chrisliu298/llm-unlearn-eco http://papers.nips.cc/paper_files/paper/2024/hash/d6359156e0e30b1caa116a4306b12688-Abstract-Conference.html
94 Dissecting Language Models: Machine Unlearning via Selective Pruning Nicholas Pochinkov, Nandi Schoots 2024-01-01 arXiv https://github.com/nickypro/selective-pruning https://doi.org/10.48550/arXiv.2403.01267
95 Boosting Alignment for Post-Unlearning Text-to-Image Generative Models Myeongseob Ko, Henry Li, Zhun Wang, Jonathan Patsenker, Jiachen T. Wang, Qinbin Li, Ming Jin, Dawn Song, Ruoxi Jia 2024-01-01 NeurIPS https://github.com/reds-lab/Restricted_gradient_diversity_unlearning.git. http://papers.nips.cc/paper_files/paper/2024/hash/9aa51796f8bede2ea947d6b6e3087ab8-Abstract-Conference.html
96 Corrective Machine Unlearning Shashwat Goel, Ameya Prabhu, Philip H. S. Torr, Ponnurangam Kumaraguru, Amartya Sanyal 2024-01-01 Trans. Mach. Learn. Res. https://github.com/drimpossible/corrective-unlearning-bench. https://local.forskningsportal.dk/local/dki-cgi/ws/cris-link?src=ku&id=ku-3bc52420-b6c0-4ebf-a0ea-0dedef731af7&ti=Corrective%20Machine%20Unlearning
97 LMEraser: Large Model Unlearning through Adaptive Prompt Tuning Jie Xu, Zihan Wu, Cong Wang, Xiaohua Jia 2024-01-01 AISTATS https://github.com/lmeraser/lmeraser https://proceedings.mlr.press/v258/xu25e.html
98 Dataset Condensation Driven Machine Unlearning Junaid Iqbal Khan 2024-01-01 arXiv https://github.com/algebraicdianuj/DC_U https://doi.org/10.48550/arXiv.2402.00195
99 A Closer Look at Machine Unlearning for Large Language Models Xiaojian Yuan, Tianyu Pang, Chao Du, Kejiang Chen, Weiming Zhang, Min Lin 2024-01-01 arXiv https://github.com/sail-sg/closer-look-LLM-unlearning. https://openreview.net/forum?id=Q1MHvGmhyT
100 Efficient Federated Unlearning under Plausible Deniability Ayush K. Varshney, Vicenç Torra 2024-01-01 Machine Learning https://github.com/Ayush-Umu/Federated-Unlearning-under-Plausible-Deniability https://doi.org/10.1007/s10994-024-06685-x
101 Generative Unlearning for Any Identity Juwon Seo, Sung-Hoon Lee, Tae-Young Lee, Seungjun Moon, Gyeong-Moon Park 2024-01-01 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://github.com/KHU-AGI/GUIDE. https://doi.org/10.1109/CVPR52733.2024.00874
102 From Hope to Safety: Unlearning Biases of Deep Models via Gradient Penalization in Latent Space Maximilian Dreyer, Frederik Pahde, Christopher J. Anders, Wojciech Samek, Sebastian Lapuschkin 2024-01-01 Proceedings of the AAAI Conference on Artificial Intelligence https://github.com/frederikpahde/rrclarc. https://doi.org/10.1609/aaai.v38i19.30096
103 Game-Theoretic Unlearnable Example Generator Shuang Liu, Yihan Wang, Xiao-Shan Gao 2024-01-01 Proceedings of the AAAI Conference on Artificial Intelligence https://github.com/hong-xian/gue. https://doi.org/10.1609/aaai.v38i19.30130
104 FedCSA: Boosting the Convergence Speed of Federated Unlearning under Data Heterogeneity Zhen Wang, Daniyal M. Alghazzawi, Li Cheng, Gaoyang Liu, Chen Wang, Zeng Cheng, Yang Yang 2023-12-21 ISPA/BDCloud/SocialCom/SustainCom https://github.com/ZhenWang9/FedCSA. https://doi.org/10.1109/ispa-bdcloud-socialcom-sustaincom59178.2023.00083
105 Deep Unlearning: Fast and Efficient Gradient-free Approach to Class Forgetting Sangamesh Kodge, Gobinda Saha, Kaushik Roy 2023-12-01 Trans. Mach. Learn. Res. https://github.com/sangamesh-kodge/class_forgetting. https://openreview.net/forum?id=BmI5p6wBi0
106 Learn to Unlearn for Deep Neural Networks: Minimizing Unlearning Interference with Gradient Projection Tuan Hoang, Santu Rana, Sunil Gupta, Svetha Venkatesh 2023-12-01 2022 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV) https://github.com/hnanhtuan/projected_gradient_unlearning. https://doi.org/10.1109/WACV57701.2024.00475
107 Stable Unlearnable Example: Enhancing the Robustness of Unlearnable Examples via Stable Error-Minimizing Noise Yixin Liu, Kaidi Xu, Xun Chen, Lichao Sun 2023-11-01 Proceedings of the AAAI Conference on Artificial Intelligence https://github.com/liuyixin-louis/Stable-Unlearnable-Example. https://doi.org/10.48550/arXiv.2311.13091
108 Towards Machine Unlearning Benchmarks: Forgetting the Personal Identities in Facial Recognition Systems Dasol Choi, Dongbin Na 2023-11-01 arXiv https://github.com/ndb796/MachineUnlearning. https://doi.org/10.48550/arXiv.2311.02240
109 SalUn: Empowering Machine Unlearning via Gradient-based Weight Saliency in Both Image Classification and Generation Chongyu Fan, Jiancheng Liu, Yihua Zhang, Eric Wong, Dennis Wei, Sijia Liu 2023-10-01 arXiv https://github.com/OPTML-Group/Unlearn-Saliency. https://openreview.net/forum?id=gn0mIhQGNM
110 To Generate or Not? Safety-Driven Unlearned Diffusion Models Are Still Easy To Generate Unsafe Images ... For Now Yimeng Zhang, Jinghan Jia, Xin Chen, Aochuan Chen, Yihua Zhang, Jiancheng Liu, Ke Ding, Sijia Liu 2023-10-01 Lecture notes in computer science https://github.com/OPTML-Group/Diffusion-MU-Attack. https://doi.org/10.1007/978-3-031-72998-0_22
111 Fair Machine Unlearning: Data Removal while Mitigating Disparities Alex Oesterling, Jiaqi Ma, Flávio P. Calmon, Himabindu Lakkaraju 2023-07-01 AISTATS https://github.com/AI4LIFE-GROUP/fair-unlearning https://proceedings.mlr.press/v238/oesterling24a.html
112 Fast Yet Effective Machine Unlearning Ayush K. Tarun, Vikram S. Chundawat, Murari Mandal, Mohan S. Kankanhalli 2023-05-01 IEEE Transactions on Neural Networks and Learning Systems https://github.com/vikram2000b/Fast-Machine-Unlearning https://doi.org/10.1109/tnnls.2023.3266233
113 Unlearnable Examples Give a False Sense of Security: Piercing through Unexploitable Data with Learnable Examples Wan Jiang, Yunfeng Diao, He Wang, Jianxin Sun, Meng Wang, Richang Hong 2023-05-01 ACM Multimedia https://github.com/jiangw-0/LE_JCDP. https://doi.org/10.48550/arXiv.2305.09241
114 CleanCLIP: Mitigating Data Poisoning Attacks in Multimodal Contrastive Learning Hritik Bansal, Nishad Singhi, Yu Yang, Fan Yin, Aditya Grover, Kai-Wei Chang 2023-04-16 RTML Workshop 2023 CatalyzeX 2 code implementations https://openreview.net/pdf/6a86afb6f0e0ce8a38d619097336004f6f0b6a73.pdf
115 Learn, Unlearn and Relearn: An Online Learning Paradigm for Deep Neural Networks Vijaya Raghavan T. Ramkumar, Elahe Arani, Bahram Zonooz 2023-03-01 Trans. Mach. Learn. Res. CatalyzeX 1 code implementation https://openreview.net/pdf/e61ee961464c8ff0055125464944b1b3ca4bb37a.pdf
116 Learning the Unlearnable: Adversarial Augmentations Suppress Unlearnable Example Attacks Tianrui Qin, Xitong Gao, Juanjuan Zhao, Kejiang Ye, Cheng-Zhong Xu 2023-03-01 arXiv https://github.com/lafeat/ueraser. https://doi.org/10.48550/arXiv.2303.15127
117 Voint Cloud: Multi-View Point Cloud Representation for 3D Understanding Abdullah Hamdi, Silvio Giancola, Bernard Ghanem 2023-02-01 ICLR 2023 poster CatalyzeX 2 code implementations https://openreview.net/pdf/b3f85b26464b6cd916b9a66adb82d3d295c951c4.pdf
118 Sub-Task Decomposition Enables Learning in Sequence to Sequence Tasks Noam Wies, Yoav Levine, Amnon Shashua 2023-02-01 ICLR 2023 poster CatalyzeX 1 code implementation https://openreview.net/pdf/0e2acc3ed9aaaff91e94533aa1eb2cec3a27915b.pdf
119 One-Pixel Shortcut: On the Learning Preference of Deep Neural Networks Shutong Wu, Sizhe Chen, Cihang Xie, Xiaolin Huang 2023-02-01 ICLR 2023 notable top 25% CatalyzeX 1 code implementation https://openreview.net/pdf/b69561625d5ce4388db999c205fdb5a8b988725e.pdf
120 Zero-Shot Machine Unlearning Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, Mohan S. Kankanhalli 2023-01-01 IEEE Transactions on Information Forensics and Security https://github.com/ayu987/zero-shot-unlearning https://doi.org/10.1109/tifs.2023.3265506
121 What Can We Learn from Unlearnable Datasets? Pedro Sandoval Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein 2023-01-01 NeurIPS https://github.com/psandovalsegura/learn-from-unlearnable http://papers.nips.cc/paper_files/paper/2023/hash/ee5bb72130c332c3d4bf8d231e617506-Abstract-Conference.html
122 Task-Aware Machine Unlearning and Its Application in Load Forecasting Wangkun Xu, Fei Teng 2023-01-01 IEEE Transactions on Power Systems https://github.com/xuwkk/task_aware_machine_unlearning. https://doi.org/10.1109/tpwrs.2024.3376828
123 Unlearnable Clusters: Towards Label-Agnostic Unlearnable Examples Jiaming Zhang, Xingjun Ma, Qi Yi, Jitao Sang, Yu-Gang Jiang, Yaowei Wang, Changsheng Xu 2023-01-01 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://github.com/jiamingzhang94/Unlearnable-Clusters. https://doi.org/10.1109/CVPR52729.2023.00388
124 Unlearning Bias in Language Models by Partitioning Gradients Charles Yu, Sullam Jeoung, Anish Kasi, Pengfei Yu, Heng Ji 2023-01-01 Findings of the Association for Computational Linguistics: ACL 2022 https://github.com/CharlesYu2000/PCGU-UnlearningBias. https://doi.org/10.18653/v1/2023.findings-acl.375
125 Recommendation Unlearning via Influence Function Yang Zhang, Zhiyu Hu, Yimeng Bai, Fuli Feng, Jiancan Wu, Qifan Wang, Xiangnan He 2023-01-01 ACM Transactions on Recommender Systems https://github.com/baiyimeng/IFRU. https://doi.org/10.48550/arXiv.2307.02147
126 Model Sparsification Can Simplify Machine Unlearning Jinghan Jia, Jiancheng Liu, Parikshit Ram, Yuguang Yao, Gaowen Liu, Yang Liu, Pranay Sharma, Sijia Liu 2023-01-01 NeurIPS https://github.com/OPTML-Group/Unlearn-Sparse. http://papers.nips.cc/paper_files/paper/2023/hash/a204aa68ab4e970e1ceccfb5b5cdc5e4-Abstract-Conference.html
127 Inductive Graph Unlearning Cheng-Long Wang, Mengdi Huai, Di Wang 2023-01-01 USENIX Security Symposium https://github.com/Happy2Git/GUIDE. https://www.usenix.org/conference/usenixsecurity23/presentation/wang-cheng-long
128 GNNDelete: A General Strategy for Unlearning in Graph Neural Networks Jiali Cheng, George Dasoulas, Huan He, Chirag Agarwal, Marinka Zitnik 2023-01-01 ICLR 2023 poster CatalyzeX 1 code implementation https://openreview.net/pdf/d344e51366b6eeb1347bf96857a1cdeb5ca03e64.pdf
129 GIF: A General Graph Unlearning Strategy via Influence Function Jiancan Wu, Yi Yang, Yuchun Qian, Yongduo Sui, Xiang Wang, Xiangnan He 2023-01-01 Proceedings of the ACM Web Conference 2022 https://github.com/wujcan/GIF-torch https://doi.org/10.48550/arXiv.2304.02835
130 ERM-KTP: Knowledge-Level Machine Unlearning via Knowledge Transfer Shen Lin, Xiaoyu Zhang, Chenyang Chen, Xiaofeng Chen, Willy Susilo 2023-01-01 2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) https://github.com/RUIYUN-ML/ERM-KTP https://doi.org/10.1109/CVPR52729.2023.01929
131 A Survey of Federated Unlearning: A Taxonomy, Challenges and Future Directions Jiaxi Yang, Yang Zhao 2023-01-01 arXiv https://github.com/abbottyanginchina/Awesome-Federated-Unlearning. https://doi.org/10.48550/arXiv.2310.19218
132 Adapt then Unlearn: Exploring Parameter Space Semantics for Unlearning in Generative Adversarial Networks Piyush Tiwary, Atri Guha, Subhodip Panda, Prathosh A. P. 2023-01-01 Trans. Mach. Learn. Res. https://github.com/atriguha/Adapt_Unlearn. https://openreview.net/forum?id=jAHEBivObO
133 PatchGT: Transformer over Non-trainable Clusters for Learning Graph Representations Han Gao, Xu Han, Jiaoyang Huang, Jian-Xun Wang, Liping Liu 2022-11-24 LoG 2022 Poster CatalyzeX 1 code implementation https://openreview.net/pdf/7a95f2c19eec64ed2379944a8398af365f166ed3.pdf
134 Trap and Replace: Defending Backdoor Attacks by Trapping Them into an Easy-to-Replace Subnetwork Haotao Wang, Junyuan Hong, Aston Zhang, Jiayu Zhou, Zhangyang Wang 2022-10-31 NeurIPS 2022 Accept CatalyzeX 4 code implementations https://openreview.net/pdf/a0b040b733099d83fd30969cd35fa8cc35c367b2.pdf
135 Autoregressive Perturbations for Data Poisoning Pedro Sandoval-Segura, Vasu Singla, Jonas Geiping, Micah Goldblum, Tom Goldstein, David W. Jacobs 2022-10-31 NeurIPS 2022 Accept CatalyzeX 2 code implementations https://openreview.net/pdf/f465f9046724189ffd748375c5f6a4ac4d722e10.pdf
136 Exploring the Limits of Domain-Adaptive Training for Detoxifying Large-Scale Language Models Boxin Wang, Wei Ping, Chaowei Xiao, Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Bo Li, Anima Anandkumar, Bryan Catanzaro 2022-10-31 NeurIPS 2022 Accept CatalyzeX 2 code implementations https://openreview.net/pdf/cbffa1a0bf2612f146adbc70397e00fc131d2db4.pdf
137 The Privacy Onion Effect: Memorization is Relative Nicholas Carlini, Matthew Jagielski, Chiyuan Zhang, Nicolas Papernot, Andreas Terzis, Florian Tramer 2022-10-31 NeurIPS 2022 Accept CatalyzeX 1 code implementation https://openreview.net/pdf/9693b6b162a476e99f5438ece8d66f14a520d97b.pdf
138 Characterizing Datapoints via Second-Split Forgetting Pratyush Maini, Saurabh Garg, Zachary Chase Lipton, J Zico Kolter 2022-07-20 NeurIPS 2022 Accept CatalyzeX 2 code implementations https://openreview.net/pdf/4e3bb598ca199212473a7389946dde4baf3d97b1.pdf
139 Deep Unlearning via Randomized Conditionally Independent Hessians Ronak Mehta, Sourav Pal, Vikas Pratap Singh, Sathya N. Ravi 2022-06-01 https://github.com/vsingh-group/LCODEC-deep-unlearning https://doi.org/10.1109/cvpr52688.2022.01017
140 Can Bad Teaching Induce Forgetting? Unlearning in Deep Networks using an Incompetent Teacher Vikram S. Chundawat, Ayush K. Tarun, Murari Mandal, Mohan S. Kankanhalli 2022-05-01 Proceedings of the AAAI Conference on Artificial Intelligence https://github.com/vikram2000b/bad-teaching-unlearning https://doi.org/10.48550/arXiv.2205.08096
141 Robust Unlearnable Examples: Protecting Data Privacy Against Adversarial Learning Shaopeng Fu, Fengxiang He, Yang Liu, Li Shen, Dacheng Tao 2022-03-01 ICLR 2022 Poster CatalyzeX 1 code implementation https://openreview.net/pdf/cb11d28b469a29f68dc6043214ae3f4f579b360a.pdf
142 Knowledge Removal in Sampling-based Bayesian Inference Shaopeng Fu, Fengxiang He, Dacheng Tao 2022-01-28 ICLR 2022 Poster CatalyzeX 1 code implementation https://openreview.net/pdf/a42ad90a502167268f1ba4c67f57150bf59ccbc9.pdf
143 Recommendation Unlearning Chong Chen, Fei Sun, Min Zhang, Bolin Ding 2022-01-01 Proceedings of the ACM Web Conference 2022 https://github.com/chenchongthu/Recommendation-Unlearning https://openreview.nethttps://arxiv.org/pdf/2201.06820.pdf
144 QUARK: Controllable Text Generation with Reinforced Unlearning Ximing Lu, Sean Welleck, Jack Hessel, Liwei Jiang, Lianhui Qin, Peter West, Prithviraj Ammanabrolu, Yejin Choi 2022-01-01 NeurIPS 2022 (Oral Selection) CatalyzeX 1 code implementation http://papers.nips.cc/paper_files/paper/2022/hash/b125999bde7e80910cbdbd323087df8f-Abstract-Conference.html
145 Machine Unlearning of Federated Clusters Chao Pan, Jin Sima, Saurav Prakash, Vishal Singh Rana, Olgica Milenković 2022-01-01 ICLR 2023 poster CatalyzeX 1 code implementation https://openreview.net/pdf/51ee65b11a32de7ad446a5917d748f9da5399714.pdf
146 Knowledge Unlearning for Mitigating Privacy Risks in Language Models Joel Jang, Dongkeun Yoon, Sohee Yang, Sungmin Cha, Moontae Lee, Lajanugen Logeswaran, Minjoon Seo 2022-01-01 Submitted to ICLR 2023 CatalyzeX 2 code implementations https://openreview.net/pdf/b13e3c3cdc06b81ed93687d74823ddd0aef79674.pdf
147 Hidden Poison: Machine Unlearning Enables Camouflaged Poisoning Attacks Jimmy Z. Di, Jack F. Douglas, Jayadev Acharya, Gautam Kamath, Ayush Sekhari 2022-01-01 Submitted to ICLR 2023 CatalyzeX 1 code implementation http://papers.nips.cc/paper_files/paper/2023/hash/8b4add8b0aa8749d80a34ca5d941c355-Abstract-Conference.html
148 FedHarmony: Unlearning Scanner Bias with Distributed Data Nicola K. Dinsdale, Mark Jenkinson, Ana I. L. Namburete 2022-01-01 Lecture notes in computer science https://github.com/nkdinsdale/FedHarmony. https://doi.org/10.1007/978-3-031-16452-1_66
149 Deep Regression Unlearning Ayush Kumar Tarun, Vikram Singh Chundawat, Murari Mandal, Mohan S. Kankanhalli 2022-01-01 arXiv https://github.com/ayu987/deep-regression-unlearning https://proceedings.mlr.press/v202/tarun23a.html
150 Continual Learning and Private Unlearning Bo Liu, Qiang Liu, Peter Stone 2022-01-01 CoLLAs https://github.com/Cranial-XIX/Continual-Learning-Private-Unlearning. https://proceedings.mlr.press/v199/liu22a.html
151 Atlas: Universal Function Approximator For Memory Retention Heinrich van Deventer, Anna Sergeevna Bosman 2022-01-01 NeurIPS 2022 Submitted CatalyzeX 1 code implementation https://openreview.net/pdf/95b89482f610b970f80506d51d6924d79cd125e6.pdf
152 Adversarial Unlearning: Reducing Confidence Along Adversarial Directions Amrith Setlur, Benjamin Eysenbach, Virginia Smith, Sergey Levine 2022-01-01 NeurIPS 2022 Accept CatalyzeX 1 code implementation http://papers.nips.cc/paper_files/paper/2022/hash/75f1a165c7561e028c41d42fa6286a76-Abstract-Conference.html
153 A Survey of Machine Unlearning Thanh Tam Nguyen, Thanh Trung Huynh, Zhao Ren, Phi Le Nguyen, Alan Wee-Chung Liew, Hongzhi Yin, Quoc Viet Hung Nguyen 2022-01-01 ACM Transactions on Intelligent Systems and Technology https://github.com/tamlhp/awesome-machine-unlearning. https://doi.org/10.48550/arXiv.2209.02299
154 Certified Graph Unlearning Eli Chien, Chao Pan, Olgica Milenkovic 2022-01-01 NeurIPS 2022 GLFrontiers Workshop CatalyzeX 1 code implementation https://openreview.net/pdf/255ad2fc5a24c56a6f91f08eabdfdd9ba94a3bf2.pdf
155 Adaptive Machine Unlearning Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi -Malvajerdi, Christopher Waites 2021-11-09 Neural Information Processing Systems CatalyzeX 1 code implementation https://proceedings.neurips.cc/paper/2021/hash/87f7ee4fdb57bdfd52179947211b7ebb-Abstract.html
156 Unlearnable Examples: Making Personal Data Unexploitable Hanxun Huang, Xingjun Ma, Sarah Monazam Erfani, James Bailey, Yisen Wang 2021-01-13 ICLR 2021 Spotlight CatalyzeX 1 code implementation https://openreview.net/pdf/eb123b0f1c20d0c5d47b33fa7feca81748e02666.pdf
157 Adversarial Unlearning of Backdoors via Implicit Hypergradient Yi Zeng, Si Chen, Won Park, Z. Morley Mao, Ming Jin, Ruoxi Jia 2021-01-01 ICLR 2022 Poster CatalyzeX 1 code implementation https://openreview.net/pdf/6aeb6e81c9d0eadbb4cfbefb6caac0f155d561ea.pdf
158 Towards Probabilistic Verification of Machine Unlearning David Marco Sommer, Liwei Song, Sameer Wagh, Prateek Mittal 2020-01-01 arXiv https://github.com/inspire-group/unlearning-verification http://arxiv.org/abs/2003.04247v2
159 When Machine Unlearning Jeopardizes Privacy Min Chen, Zhikun Zhang, Tianhao Wang, Michael Backes, Mathias Humbert, Yang Zhang 2020-01-01 Proceedings of the 2022 ACM SIGSAC Conference on Computer and Communications Security https://github.com/MinChen00/UnlearningLeaks. https://doi.org/10.1145/3460120.3484756
160 Learnability for the Information Bottleneck Tailin Wu, Ian Fischer, Isaac Chuang, Max Tegmark 2019-04-17 LLD 2019 CatalyzeX 1 code implementation https://openreview.net/pdf/1290e4dc7b5d511b8b213f53c54006475d031bfc.pdf

About

Papers related to Machine/ Federated Unlearning in all top venues

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published