PlasticEnz offers a streamlined and accessible solution for identifying plastic-degrading enzymes in metagenomic data by combining homology-based and machine learning approaches. It accepts contigs, genomes, MAGs and proteins and screens them for potential plastic degrading homologous enzymes.
Clone the repositiory and navigate into the tool main folder (where setup.py is located)
git clone https://github.com/akrzyno/PlasticEnz.git
Set Up the Conda Environment with External Tools
conda create -n plasticenz_env --no-channel-priority -c bioconda -c conda-forge -c defaults python=3.11 libffi=3.4.2 prodigal hmmer diamond bowtie2 samtools
Activate the environment
conda activate plasticenz_env
Install Python Package Dependencies With your conda environment activated, navigate to the package folder and install the remaining python packages:
cd PlasticEnz
pip install -r requirements.txt
Install the package
pip install .
Test if it runs correctly
To see all the options:
plasticenz
or
plasticenz --help
Please before using the PlasticEnz on your dataset run the test-case (data included within the package) to ensure all is sound. To do so run:
plasticenz --test --outdir .
Wait until you see "✅PlasticEnz analysis completed successfully!" and check the outdir folder for the output folder. If you see three these files there: Abundances_table.tsv Proteins_unique.fa Summary_table.tsv,you are good to go.
___ _ _ _ __
/ _ | | __ _ ___| |_(_) ___ /___ __ ____
/ /_)| |/ _` / __| __| |/ __|/_\| '_ \|_ /
/ ___/| | (_| \__ | |_| | (__//__| | | |/ /
\/ |_|\__,_|___/\__|_|\___\__/|_| |_/___|
#####################################
# Welcome to PlasticEnz #
#####################################
Please remember to cite following tools:
- Prodigal: Hyatt et al., 2010. BMC Bioinformatics. DOI: 10.1186/1471-2105-11-119
- HMMER: Eddy, 2011. PLoS Comput Biol. DOI: 10.1371/journal.pcbi.1002195
- DIAMOND: Buchfink et al., 2015. Nat Methods. DOI: 10.1038/nmeth.3176
- Bowtie2: Langmead & Salzberg, 2012. Nat Methods. DOI: 10.1038/nmeth.1923
- Samtools: Danecek et al., 2021. Gigascience. DOI: 10.1093/gigascience/giab008
- ProtTrans: Elnaggar et al., 2022. IEEE TPAMI. DOI: 10.1109/TPAMI.2021.3095381
usage: plasticenz [-h] [-c CONTIGS] [-1 READS_FORWARD] [-2 READS_REVERSE] [-p PROTEINS] [-g GENOME] [--cores CORES] [--polymer POLYMER] [--outdir OUTDIR]
[--use_gpu] [--evalue_hmmer EVALUE_HMMER] [--bitscore_hmmer BITSCORE_HMMER] [--evalue_diamond EVALUE_DIAMOND]
[--bitscore_diamond BITSCORE_DIAMOND] [--test] [--sensitive]
PlasticEnz: A tool for detecting plastic-degrading enzymes from sequence data.
options:
-h, --help show this help message and exit
-c CONTIGS, --contigs CONTIGS
Path to contigs file (FASTA). (default: None)
-1 READS_FORWARD, --reads_forward READS_FORWARD
Path to forward reads file (FASTQ). (default: None)
-2 READS_REVERSE, --reads_reverse READS_REVERSE
Path to reverse reads file (FASTQ). (default: None)
-p PROTEINS, --proteins PROTEINS
Path to protein file (FASTA). (default: None)
-g GENOME, --genome GENOME
Path to genome or MAG file (FASTA). (default: None)
--cores CORES Number of CPU cores to use. (default: 1)
--polymer POLYMER Polymer(s) to screen for. Use 'all' for all available. (default: None)
--outdir OUTDIR Output directory. (default: None)
--use_gpu Attempt to use GPU for accelerated computations. (default: False)
--evalue_hmmer EVALUE_HMMER
E-value threshold for HMMER search. (default: 1e-05)
--bitscore_hmmer BITSCORE_HMMER
Bitscore value for HMMER search. (default: 20)
--evalue_diamond EVALUE_DIAMOND
E-value threshold for DIAMOND search. (default: 1e-05)
--bitscore_diamond BITSCORE_DIAMOND
Minimum alignment quality for DIAMOND search. (default: 20)
--test Run the tool with a predefined test dataset. (default: False)
--sensitive Use neural network model (nn_model.pkl) for sensitive predictions. (default: False)
PlasticEnz requires several external tools. If you encounter issues with Conda installation, you can install them manually:
conda install -c bioconda prodigal=2.6.3
conda install -c bioconda hmmer=3.4
conda install -c bioconda diamond=2.1.8
conda install -c bioconda bowtie2=2.5.4
conda install -c bioconda samtools=1.21