Skip to content

ml4wifi-devs/ftm-optimal

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

37 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

FTM Parameters Optimization

Code for the research paper:

  • Krzysztof Kurczab, Maksymilian Wojnar, Kamil Szczech, and Katarzyna Kosek-Szott. "Improving Robustness of Indoor Positioning by Tuning IEEE 802.11 Fine Timing Measurement Parameters" (under review).

Installation

Python package

  1. Clone the repository:
    git clone https://github.com/ml4wifi-devs/ftm-optimal.git
    
  2. Install requirements:
    pip install optuna~=4.1.0
    

ns-3 network simulator

The wifi-ftm-ns3 extension of the ns-3 network simulator needs to be installed on your machine. You can read more on ns-3 installation process in the official installation notes.

  1. Download and unzip wifi-ftm-ns3:
    git clone https://github.com/tkn-tub/wifi-ftm-ns3.git
    mv wifi-ftm-ns3/ns-allinone-3.33-FTM-SigStr/ns-3.33 $NS3_DIR
    
  2. Copy the scenario file to the ns-3 scratch directory:
    cp $PROJECT_DIR/scenario.cc $NS3_DIR/scratch
    
  3. Build ns-3:
    ./waf configure -d optimized --enable-examples --enable-tests --disable-werror --disable-python
    ./waf
    

Usage

Run the following command to start the optimization process:

python main.py --nWifi=<N_WIFI> --dataRate=<DATA_RATE> [ARGS]

The process takes a significant amount of time to complete. The results are stored in the SQLite database. To run the evaluation process in the background, execute the following command:

nohup python main.py --nWifi=<N_WIFI> --dataRate=<DATA_RATE> [ARGS] &

Analysis

To install the required packages for the graphical analysis, run the following command:

pip install optuna-dashboard

To start the dashboard, run the following command:

optuna-dashboard sqlite:///<FILENAME>.db

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Contributors 3

  •  
  •  
  •