This small library provides a simple schema validation system for JavaScript/TypeScript. The library has basic types with opportunities for extending.
npm install @esmj/schema
@esmj/schema
is a lightweight and flexible schema validation library designed for developers who need a simple yet powerful way to validate and transform data. Here are some reasons to choose this package:
- TypeScript First: Built with TypeScript in mind, it provides strong type inference and ensures type safety throughout your codebase.
- Extensibility: Easily extend the library with custom logic using the
extend
function. - Rich Features: Includes advanced features like preprocessing, transformations, piping, and refinements, which are not always available in similar libraries.
- Lightweight: None dependencies and a small footprint make it ideal for projects where performance and simplicity are key.
- Customizable: Offers fine-grained control over validation and error handling.
- Performance:
@esmj/schema
is optimized for speed, making it one of the fastest schema validation libraries available. Whether you're creating schemas, parsing data, or handling errors,@esmj/schema
consistently outperforms many popular alternatives. Its minimalistic design ensures low overhead, even in high-performance applications.
- Schema Creation: Create schemas at up to 4 370 618 ops/s (0.23 ÎĽs latency) with @sinclair/typebox, or 736 810 ops/s (1.36 ÎĽs latency) with @esmj/schema. Superstruct and @esmj/schema are also among the fastest for schema creation.
- Parsing: Parse data at up to 4 627 714 ops/s (0.22 ÎĽs latency) with @zod/mini (note: @zod/mini was observed to consume 200% CPU, while other libraries used only 100% CPU), or 3 142 587 ops/s (0.32 ÎĽs latency) with @esmj/schema. ArkType and effect/Schema also show strong parsing throughput.
- Error Handling: Efficiently manage errors at up to 2 428 049 ops/s (0.41 ÎĽs latency) with @esmj/schema, or 1 386 616 ops/s (0.72 ÎĽs latency) with @zod/mini.
These performance metrics make @esmj/schema
an excellent choice for both frontend and backend applications where speed and efficiency are critical.
When choosing a schema validation library, bundle size can be an important factor, especially for frontend applications where minimizing JavaScript size is critical. Here's how @esmj/schema
compares to other popular libraries:
Library | Bundle Size (minified + gzipped) |
---|---|
@esmj/schema |
~1,2 KB |
Superstruct | ~3.2 KB |
@sinclair/typebox | ~11.7 KB |
Yup | ~12.2 KB |
Zod@3 | ~13 KB |
@zod/mini | ~20,5 KB |
Joi | ~40,4 KB |
Zod@4 | ~40,8 KB |
ArkType | ~41,8 KB |
Effect/Schema | ~115.5 KB |
All benchmarks were measured on Node.js v24.1.0.
Library | Throughput average (ops/s) | Latency average (ÎĽs) |
---|---|---|
@esmj/schema | 736 810.12 ± 3.03% | 1.36 ± 3.24% |
Zod@3 | 112 575.50 ± 0.86% | 8.88 ± 0.87% |
@zod/mini | 23 456.07 ± 1.26% | 42.64 ± 1.28% |
Yup | 75 051.06 ± 4.38% | 13.36 ± 4.41% |
Superstruct | 509 401.06 ± 0.80% | 1.96 ± 0.80% |
Joi | 42 455.28 ± 1.27% | 23.56 ± 1.30% |
@sinclair/typebox |
4 370 618.49 ± 1.23% |
0.23 ± 1.23% |
ArkType | 16 282.69 ± 4.14% | 61.61 ± 4.38% |
effect/Schema | 24 919.15 ± 4.31% | 40.31 ± 4.78% |
Library | Throughput average (ops/s) | Latency average (ÎĽs) |
---|---|---|
@esmj/schema | 3 142 587.31 ± 0.97% | 0.32 ± 0.99% |
zod@3 | 1 018 777.24 ± 0.64% | 0.98 ± 0.65% |
@zod/mini |
4 627 714.90 ± 2.23% |
0.22 ± 2.36% |
Yup | 108 361.49 ± 0.50% | 9.23 ± 0.51% |
Superstruct | 252 904.42 ± 2.20% | 3.96 ± 2.44% |
Joi | 346 094.49 ± 0.65% | 2.89 ± 0.65% |
@sinclair/typebox | 228 711.62 ± 2.03% | 4.38 ± 2.23% |
ArkType | 1 677 066.00 ± 0.58% | 0.60 ± 0.59% |
effect/Schema | 1 060 056.14 ± 0.61% | 0.94 ± 0.61% |
Library | Throughput average (ops/s) | Latency average (ÎĽs) |
---|---|---|
@esmj/schema |
2 428 049.34 ± 0.54% |
0.41 ± 0.53% |
zod@3 | 641 504.22 ± 3.67% | 1.57 ± 4.38% |
@zod/mini | 1 386 616.61 ± 0.60% | 0.72 ± 0.60% |
Yup | 98 904.30 ± 0.61% | 10.11 ± 0.61% |
Superstruct | 122 782.09 ± 1.03% | 8.15 ± 1.03% |
Joi | 271 301.11 ± 1.58% | 3.69 ± 1.59% |
@sinclair/typebox | 228 734.49 ± 0.55% | 4.37 ± 0.56% |
ArkType | 258 685.33 ± 1.23% | 3.87 ± 1.23% |
effect/Schema | 165 753.69 ± 0.99% | 6.03 ± 1.00% |
Note: During the performance tests, @zod/mini
was observed to consume 200% CPU, while other libraries used only 100% CPU. This may affect the interpretation of the results, especially in multi-threaded environments.
import { s, type Infer} from '@esmj/schema';
const schema = s.object({
username: s.string().optional().refine((val) => val.length <= 255, {
message: "Username can't be more than 255 characters",
}),
password: s.string().default('unknown'),
birthday: s.preprocess((value) => new Date(value), s.date()),
account: s.string().default('0').transform((value) => Number.parseInt(value)).pipe(s.number()),
money: s.number(),
address: s.object({
street: s.string(),
city: s.string().optional(),
}).default({ street: 'unknown' }),
records: s.array(s.object({ name: s.string() })).default([]),
});
type schemaType = Infer<typeof schema>;
const result = schema.parse({
username: 'john_doe',
birthday: '2000-01-01T23:59:59.000Z',
address: { city: 'New York' },
money: 100,
});
console.log(result);
// {
// username: 'john_doe',
// password: 'unknown',
// birthday: Date('2000-01-01T23:59:59.000Z'),
// account: 0,
// money: 100,
// address: {
// street: 'unknown',
// city: 'New York',
// },
// records: [],
// }
Creates a string schema. You can optionally pass options
to customize error messages.
message
: Can be either a constant string or a function(value) => string
.
const stringSchema = s.string({
message: 'This is a constant error message.',
});
const stringSchemaFunc = s.string({
message: (value) => `Custom error: "${value}" is not a valid string.`,
});
Creates a number schema. You can optionally pass options
to customize error messages.
message
: Can be either a constant string or a function(value) => string
.
const numberSchema = s.number({
message: 'This is a constant error message.',
});
const numberSchemaFunc = s.number({
message: (value) => `Custom error: "${value}" is not a valid number.`,
});
Creates a boolean schema. You can optionally pass options
to customize error messages.
message
: Can be either a constant string or a function(value) => string
.
const booleanSchema = s.boolean({
message: 'This is a constant error message.',
});
const booleanSchemaFunc = s.boolean({
message: (value) => `Custom error: "${value}" is not a valid boolean.`,
});
Creates a date schema. You can optionally pass options
to customize error messages.
message
: Can be either a constant string or a function(value) => string
.
const dateSchema = s.date({
message: 'This is a constant error message.',
});
const dateSchemaFunc = s.date({
message: (value) => `Custom error: "${value}" is not a valid date.`,
});
Creates an object schema with the given definition. You can optionally pass options
to customize error messages.
message
: Can be either a constant string or a function(value) => string
.
const objectSchema = s.object(
{
key: s.string(),
value: s.number(),
},
{
message: 'This is a constant error message.',
},
);
const objectSchemaFunc = s.object(
{
key: s.string(),
value: s.number(),
},
{
message: (value) => `Custom error: "${JSON.stringify(value)}" is not a valid object.`,
},
);
Creates an array schema with the given item definition. You can optionally pass options
to customize error messages.
message
: Can be either a constant string or a function(value) => string
.
const arraySchema = s.array(s.string(), {
message: 'This is a constant error message.',
});
const arraySchemaFunc = s.array(s.string(), {
message: (value) => `Custom error: "${JSON.stringify(value)}" is not a valid array.`,
});
Creates an enum schema that validates against a predefined set of string values. You can optionally pass options
to customize error messages.
message
: Can be either a constant string or a function(value) => string
.
const enumSchema = s.enum(['admin', 'user', 'guest'], {
message: 'This is a constant error message.',
});
const enumSchemaFunc = s.enum(['admin', 'user', 'guest'], {
message: (value) => `Custom error: "${value}" is not a valid enum value.`,
});
Creates a schema that validates against multiple schemas (a union of schemas). The value must match at least one of the provided schemas. You can optionally pass options
to customize error messages.
message
: Can be either a constant string or a function(value) => string
.
const schema = s.union([
s.string(),
s.number(),
s.boolean(),
], {
message: 'This is a constant error message.',
});
const schemaFunc = s.union([
s.string(),
s.number(),
s.boolean(),
], {
message: (value) => `Custom error: "${value}" does not match any of the union schemas.`,
});
Creates a schema that accepts any value.
const anySchema = s.any();
Creates a schema that preprocesses the input value using the provided callback before validating it with the given schema.
const preprocessSchema = s.preprocess((value) => new Date(value), s.date());
Parses the given value according to the schema.
const result = stringSchema.parse('hello');
Safely parses the given value according to the schema, returning a success or error result.
const result = stringSchema.safeParse('hello');
// { success: true, data: 'hello' }
const errorResult = stringSchema.safeParse(123);
// { success: false, error: { message: 'The value "123" must be type of string but is type of "number".' } }
Note: The error
returned by safeParse
is not a native Error
instance. Instead, it is a plain object with the following structure:
type ErrorStructure = {
message: string;
cause?: {
key?: string;
};
};
This allows for easier serialization and debugging but may require additional handling if you expect a native Error
instance.
Makes the schema optional.
const optionalSchema = stringSchema.optional();
Makes the schema nullable.
const nullableSchema = stringSchema.nullable();
Makes the schema nullish (nullable and optional).
const nullishSchema = stringSchema.nullish();
Sets a default value for the schema.
const defaultSchema = stringSchema.default('default value');
Transforms the parsed value using the provided callback.
const transformedSchema = s.string().transform((value) => value.toUpperCase());
Pipes the output of one schema into another schema for further validation or transformation.
const pipedSchema = s.string().pipe(s.number());
Adds a refinement to the schema with a custom validation function and error message.
const refinedSchema = s.string().refine((val) => val.length <= 255, {
message: "String can't be more than 255 characters",
});
You can extend the schema system with custom logic.
import { extend, type StringSchemaInterface } from '@esmj/schema';
interface StringSchemaInterface {
customMethod(value: string): string {}
}
extend((schema, validation, options) => {
schema.customMethod = (value) => {
// Custom logic
return value;
};
return schema;
});
You can define schemas for deeply nested objects.
const nestedSchema = s.object({
user: s.object({
id: s.number(),
profile: s.object({
name: s.string(),
age: s.number().optional(),
}),
}),
});
const result = nestedSchema.parse({
user: {
id: 1,
profile: {
name: 'John Doe',
},
},
});
console.log(result);
// {
// user: {
// id: 1,
// profile: {
// name: 'John Doe',
// },
// },
// }
You can validate arrays with specific item schemas.
const arraySchema = s.array(s.object({ id: s.number(), name: s.string() }));
const result = arraySchema.parse([
{ id: 1, name: 'Item 1' },
{ id: 2, name: 'Item 2' },
]);
console.log(result);
// [
// { id: 1, name: 'Item 1' },
// { id: 2, name: 'Item 2' },
// ]
Use s.preprocess
to transform input values before validation.
const preprocessSchema = s.preprocess(
(value) => value.trim(),
s.string().refine((val) => val.length > 0, { message: 'String cannot be empty' }),
);
const result = preprocessSchema.parse(' hello ');
console.log(result);
// 'hello'
Use transform
to modify the parsed value.
const transformSchema = s.string().transform((value) => value.toUpperCase());
const result = transformSchema.parse('hello');
console.log(result);
// 'HELLO'
Pipe the output of one schema into another for further validation or transformation.
const pipedSchema = s.string()
.transform((value) => Number.parseInt(value))
.pipe(s.number().refine((val) => val > 0, { message: 'Number must be positive' }));
const result = pipedSchema.parse('42');
console.log(result);
// 42
Add custom validation logic with refine
.
const refinedSchema = s.string().refine((val) => val.startsWith('A'), {
message: 'String must start with "A"',
});
const result = refinedSchema.parse('Apple');
console.log(result);
// 'Apple'
Set default values for optional fields.
const defaultSchema = s.object({
name: s.string().default('Anonymous'),
age: s.number().optional().default(18),
});
const result = defaultSchema.parse({});
console.log(result);
// { name: 'Anonymous', age: 18 }
Use safeParse
to handle errors gracefully.
const safeSchema = s.number();
const result = safeSchema.safeParse('not a number');
if (!result.success) {
console.error(result.error.message);
} else {
console.log(result.data);
}
// Error: The value "not a number" must be type of number but is type of "string".
Combine multiple features like preprocessing, transformations, and refinements.
const combinedSchema = s.preprocess(
(value) => value.trim(),
s.string()
.transform((value) => value.toUpperCase())
.refine((val) => val.length <= 10, { message: 'String must be at most 10 characters' }),
);
const result = combinedSchema.parse(' hello ');
console.log(result);
// 'HELLO'
MIT