Skip to content

mikkoim/dinotool

Folders and files

NameName
Last commit message
Last commit date

Latest commit

Β 

History

43 Commits
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 
Β 

Repository files navigation

PyPI License

πŸ¦• DINOtool

DINOtool is a command-line tool for extracting visual features from images and videos using modern vision models like DINOv2, CLIP, SigLIP2, and OpenCLIP/timm compatible models. It supports both global (frame-level) and local (patch-level) features, and can optionally visualize feature maps using PCA.

pip install dinotool
dinotool test.jpg -o out.jpg

✨ Features

  • Works with:

    • πŸ“· Single images
    • 🎞️ Video files
    • πŸ“ Folders of images
  • 🧠 Supports multiple model backends:

    • DINOv2 (default)
    • SigLIP2, CLIP, and any timm/OpenCLIP model
  • πŸ’Ύ Outputs standard formats:

    • .parquet (flat/global features)
    • .zarr / .nc (spatial patch features)
    • .jpg / .mp4 with visualizations
  • 🌈 Optional PCA-based side-by-side visualizations

  • ⚑ Simple CLI with no coding required

πŸ‘€ Who is DINOtool for?

DINOtool is designed for:

  • Researchers exploring vision models or needing feature extraction for experiments

  • Data scientists working with image/video datasets for tasks like clustering, retrieval, or classification

  • Developers who want to use DINO, CLIP, or SigLIP2 features without writing model code

  • Students and educators looking to visualize and understand patch-based ViT features

  • Anyone who wants to preprocess media into standardized visual features for downstream ML tasks β€” without building a custom pipeline

✨Examples:

dinotool input.mp4 -o output.mp4

produces output:

sintel_out.mp4

DINOv2 accepts inputs of any size. The OpenCLIP/timm models resize the input. Here is an example of a 896x896 image:

dinotool test/data/bird1.jpg -o dinov2.jpg --model-name vit-b # Shortcut to dinov2_vitb14_reg
dinotool test/data/bird1.jpg -o siglip2.jpg --model-name siglip2 # Shortcut to hf-hub:timm/ViT-B-16-SigLIP2-512

produces outputs (DINOv2 / SigLIP2):

DINO_SigLIP2

Global features for image folders:

Processing image directories and extracting global or local features for each image is easy with DINOtool:

dinotool image_folder/ -o global_features --save-features 'frame'

produces a global_features.parquet file with global features:

filename feature_0 feature_1 feature_2 ... feature_383
cat_001.jpg 0.123 -0.045 0.211 ... 0.009
dog_002.jpg 0.097 0.033 0.187 ... -0.012
tree_003.jpg -0.056 0.140 0.092 ... 0.034
car_004.jpg 0.301 -0.202 0.144 ... -0.019

Similar files can be also produced for local patch features, for videos etc.

More examples:

More example commands can be found in test/test_cases.md

Example of reading output file formats is in docs/reading_outputs.ipynb

Example of PCA feature visualization by first masking objects using the first PCA features, similar to DINOv2 demos is in docs/masked_pca_demo.ipynb:

Masked_PCA

πŸ“¦ Installation

Basic install (Linux/WSL2)

If you do not have ffmpeg installed:

sudo apt install ffmpeg

Install via pip:

pip install dinotool

You can check that dinotool is properly installed by testing it on an image:

dinotool test.jpg -o out.jpg

uv

If you have uv installed, you can simply run DINOtool with

uv run --with dinotool dinotool test.jpg -o out.jpg

You still have to have ffmpeg installed. uvx does not work on linux due to xformers dependencies.

🐍 Conda Environment (Recommended)

If you want an isolated setup, especially useful for managing ffmpeg and dependencies:

Install Miniforge.

conda create -n dinotool python=3.12
conda activate dinotool
conda install -c conda-forge ffmpeg
pip install dinotool

Windows notes:

  • Windows is supported only for CPU usage. If you want GPU support on Windows, we recommend using WSL2 + Ubuntu.
  • The conda method above is recommended for Windows CPU setups.

πŸš€ Basic usage

πŸ“· Single images

Extract and visualize DINO features from an image:

dinotool input.jpg -o output.jpg

This produces a .jpg similar to the examples above.

For a easy-to-process Parquet file of the local features without visualization, run

dinotool input.jpg -o out_features --save-features 'flat' --no-vis

🎞️ Video:

Extract global features from a video using SigLIP2:

dinotool input.mp4 -o features --model-name siglip2 --save-features frame

This produces a features.parquet file with a row for each frame of the video.

πŸ“ Folder of Images (or folders of video frames)

Process a folder of images with patch-level output:

dinotool images/ -o results --save-features full

This produces a folder results with visualization .jpg and a NetCDF file for each image separately.

If the images in the folder can be resized to a fixed size, you can use batch processing by setting a fixed resize size (--input-size W H) and --no-vis:

dinotool images/ -o results2 --save-features 'frame' --input-size 512 512 --batch-size 4 --no-vis

This produces a parquet file with global features for each image.

πŸ’Ύ Feature extraction options

Use --save-features to export features for downstream tasks.

Mode Format Output shape Best for
full .nc (image) / .zarr (video, batched image folders) (frames, height, width, feature) Keeps spatial structure of patches.
flat partitioned .parquet (frames * height * width, feature) Reliable long video processing. Faster patch-level analysis
frame .parquet (frames, feature) One global feature vector per frame

full - Spatial local features

  • Saves full patch feature maps from the ViT (one vector per image patch).
  • Useful for reconstructing spatial attention maps or for downstream tasks like segmentation.
  • Stored as netCDF for single images, .zarr for video sequences.
  • zarr saving can be memory-intensive and might still fail for large videos.
dinotool input.mp4 -o output.mp4 --save-features full

flat - Flattened local features

  • Saves same vectors as above, but discards 2D spatial layout and saves output in parquet format.
  • More reliable for longer videos.
  • Useful for faster computations for statistics, patch-level similarity and clustering.
  • For single image input saves a .parquet file with one row per patch.
  • For video inputs saves a partitioned .parquet directory, with indices for frames and patches.
dinotool input.mp4 -o output.mp4 --save-features flat

frame - Global features

  • Saves one global feature vector per frame/image.
  • Useful for temporal tasks, and creating vector databases.
  • For single image input saves a .txt file with a single vector
  • For image folder and video input saves a .parquet file with one row per frame/image.
# For a video
dinotool input.mp4 -o output.mp4 --save-features frame

# For an image
dinotool input.jpg -o output.jpg --save-features frame

The output is a side-by-side visualization with PCA of the patch-level features.

πŸ§ͺ Additional Options

--model-name

By default, the value passed to this argument is loaded from facebookresearch/dinov2, meaning that the possible DINOv2 models are:

  • dinov2_vits14
  • dinov2_vitb14
  • dinov2_vitl14
  • dinov2_vitg14

and their reg variants (recommended): i.e. dinov2_vits14_reg.

See the DINOv2 github repo for more information.

OpenCLIP models:

DINOtool now supports also ViT models that follow the OpenCLIP/timm model API for feature extraction. These models are for example the SigLIP2 models in Huggingface hub. Additionally, other models in the Hub should also work, but have not been fully tested. These include SigLIP and CLIP models.

The OpenCLIP/timm model name has to be passed in the format hf-hub:timm/<model name>.

Shortcuts: There are some predefined shortcuts for popular models. These can be passed to --model-name

# DINOv2
"vit-s": "dinov2_vits14_reg"
"vit-b": "dinov2_vitb14_reg"
"vit-l": "dinov2_vitl14_reg"
"vit-g": "dinov2_vitg14_reg"

# SigLIP2
"siglip2": "hf-hub:timm/ViT-B-16-SigLIP2-512"
"siglip2-so400m-384": "hf-hub:timm/ViT-SO400M-16-SigLIP2-384"
"siglip2-so400m-512": "hf-hub:timm/ViT-SO400M-16-SigLIP2-512"
"siglip2-b16-256": "hf-hub:timm/ViT-B-16-SigLIP2-256"
"siglip2-b16-512": "hf-hub:timm/ViT-B-16-SigLIP2-512"
"siglip2-b32-256": "hf-hub:timm/ViT-B-32-SigLIP2-256"
"siglip2-b32-512": "hf-hub:timm/ViT-B-32-SigLIP2-512"

# CLIP
"clip": "hf-hub:timm/vit_base_patch16_clip_224.openai"

--input-size

Setting input size fixes the resolution for all inputs. This is useful for processing HD videos, and mandatory for batch processing of image folders.

# Processing a HD video faster:
dinotool input.mp4 -o output.mp4 --input-size 920 540 --batch-size 16

--batch-size

For faster processing, set batch size as large as your GPU memory allows. Batch processing is possible for video files and directories of video frames (following naming where each imagename can be converted to an integer, like 00001.jpg), where all inputs are assumed to be the same size.

dinotool input.mp4 -o output.mp4 --batch-size 16

For batch processing image folders, --input-size must be set. Visualization is also not possible.

πŸ§‘β€πŸ’» Usage reference

πŸ¦• DINOtool: Extract and visualize ViT features from images and videos.

Usage:
  dinotool input_path -o output_path [options]

Arguments:
  input                   Path to image, video file, or folder of frames.
  -o, --output            Path for the output (required).

Options:
  -s, --save-features MODE    Save extracted features: full, flat, or frame
  -m, --model-name MODEL      Model to use (default: dinov2_vits14_reg)
  --input-size W H        Resize input before processing. Must be set for batch
                          processing of image folders
  -b, --batch-size N          Batch size for faster processing
  --only-pca              Only visualize PCA features.
  --no-vis                Only output features with no visualization.
                          --save features must be set.

About

Command-line tool for extracting DINO, CLIP, and SigLIP2 features for images and videos

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published