DINOtool is a command-line tool for extracting visual features from images and videos using modern vision models like DINOv2, CLIP, SigLIP2, and OpenCLIP/timm compatible models. It supports both global (frame-level) and local (patch-level) features, and can optionally visualize feature maps using PCA.
pip install dinotool
dinotool test.jpg -o out.jpg
-
Works with:
- π· Single images
- ποΈ Video files
- π Folders of images
-
π§ Supports multiple model backends:
- DINOv2 (default)
- SigLIP2, CLIP, and any timm/OpenCLIP model
-
πΎ Outputs standard formats:
- .parquet (flat/global features)
- .zarr / .nc (spatial patch features)
- .jpg / .mp4 with visualizations
-
π Optional PCA-based side-by-side visualizations
-
β‘ Simple CLI with no coding required
DINOtool is designed for:
-
Researchers exploring vision models or needing feature extraction for experiments
-
Data scientists working with image/video datasets for tasks like clustering, retrieval, or classification
-
Developers who want to use DINO, CLIP, or SigLIP2 features without writing model code
-
Students and educators looking to visualize and understand patch-based ViT features
-
Anyone who wants to preprocess media into standardized visual features for downstream ML tasks β without building a custom pipeline
dinotool input.mp4 -o output.mp4
produces output:
sintel_out.mp4
DINOv2 accepts inputs of any size. The OpenCLIP/timm models resize the input. Here is an example of a 896x896 image:
dinotool test/data/bird1.jpg -o dinov2.jpg --model-name vit-b # Shortcut to dinov2_vitb14_reg
dinotool test/data/bird1.jpg -o siglip2.jpg --model-name siglip2 # Shortcut to hf-hub:timm/ViT-B-16-SigLIP2-512
produces outputs (DINOv2 / SigLIP2):
Processing image directories and extracting global or local features for each image is easy with DINOtool:
dinotool image_folder/ -o global_features --save-features 'frame'
produces a global_features.parquet
file with global features:
filename | feature_0 | feature_1 | feature_2 | ... | feature_383 |
---|---|---|---|---|---|
cat_001.jpg |
0.123 | -0.045 | 0.211 | ... | 0.009 |
dog_002.jpg |
0.097 | 0.033 | 0.187 | ... | -0.012 |
tree_003.jpg |
-0.056 | 0.140 | 0.092 | ... | 0.034 |
car_004.jpg |
0.301 | -0.202 | 0.144 | ... | -0.019 |
Similar files can be also produced for local patch features, for videos etc.
More example commands can be found in test/test_cases.md
Example of reading output file formats is in docs/reading_outputs.ipynb
Example of PCA feature visualization by first masking objects using the first PCA features, similar to DINOv2 demos is in docs/masked_pca_demo.ipynb:
If you do not have ffmpeg installed:
sudo apt install ffmpeg
Install via pip:
pip install dinotool
You can check that dinotool is properly installed by testing it on an image:
dinotool test.jpg -o out.jpg
If you have uv
installed, you can simply run DINOtool with
uv run --with dinotool dinotool test.jpg -o out.jpg
You still have to have ffmpeg
installed. uvx
does not work on linux due to xformers
dependencies.
If you want an isolated setup, especially useful for managing ffmpeg
and dependencies:
Install Miniforge.
conda create -n dinotool python=3.12
conda activate dinotool
conda install -c conda-forge ffmpeg
pip install dinotool
- Windows is supported only for CPU usage. If you want GPU support on Windows, we recommend using WSL2 + Ubuntu.
- The conda method above is recommended for Windows CPU setups.
Extract and visualize DINO features from an image:
dinotool input.jpg -o output.jpg
This produces a .jpg
similar to the examples above.
For a easy-to-process Parquet file of the local features without visualization, run
dinotool input.jpg -o out_features --save-features 'flat' --no-vis
Extract global features from a video using SigLIP2:
dinotool input.mp4 -o features --model-name siglip2 --save-features frame
This produces a features.parquet
file with a row for each frame of the video.
Process a folder of images with patch-level output:
dinotool images/ -o results --save-features full
This produces a folder results
with visualization .jpg
and a NetCDF file for each image separately.
If the images in the folder can be resized to a fixed size, you can use batch processing by setting a fixed resize size (--input-size W H
) and --no-vis
:
dinotool images/ -o results2 --save-features 'frame' --input-size 512 512 --batch-size 4 --no-vis
This produces a parquet file with global features for each image.
Use --save-features
to export features for downstream tasks.
Mode | Format | Output shape | Best for |
---|---|---|---|
full |
.nc (image) / .zarr (video, batched image folders) |
(frames, height, width, feature) |
Keeps spatial structure of patches. |
flat |
partitioned .parquet |
(frames * height * width, feature) |
Reliable long video processing. Faster patch-level analysis |
frame |
.parquet |
(frames, feature) |
One global feature vector per frame |
- Saves full patch feature maps from the ViT (one vector per image patch).
- Useful for reconstructing spatial attention maps or for downstream tasks like segmentation.
- Stored as netCDF for single images,
.zarr
for video sequences. zarr
saving can be memory-intensive and might still fail for large videos.
dinotool input.mp4 -o output.mp4 --save-features full
- Saves same vectors as above, but discards 2D spatial layout and saves output in
parquet
format. - More reliable for longer videos.
- Useful for faster computations for statistics, patch-level similarity and clustering.
- For single image input saves a
.parquet
file with one row per patch. - For video inputs saves a partitioned
.parquet
directory, with indices for frames and patches.
dinotool input.mp4 -o output.mp4 --save-features flat
- Saves one global feature vector per frame/image.
- Useful for temporal tasks, and creating vector databases.
- For single image input saves a
.txt
file with a single vector - For image folder and video input saves a
.parquet
file with one row per frame/image.
# For a video
dinotool input.mp4 -o output.mp4 --save-features frame
# For an image
dinotool input.jpg -o output.jpg --save-features frame
The output is a side-by-side visualization with PCA of the patch-level features.
By default, the value passed to this argument is loaded from facebookresearch/dinov2
, meaning that the possible DINOv2 models are:
dinov2_vits14
dinov2_vitb14
dinov2_vitl14
dinov2_vitg14
and their reg
variants (recommended): i.e. dinov2_vits14_reg
.
See the DINOv2 github repo for more information.
OpenCLIP models:
DINOtool now supports also ViT models that follow the OpenCLIP/timm model API for feature extraction. These models are for example the SigLIP2 models in Huggingface hub. Additionally, other models in the Hub should also work, but have not been fully tested. These include SigLIP and CLIP models.
The OpenCLIP/timm model name has to be passed in the format hf-hub:timm/<model name>
.
Shortcuts:
There are some predefined shortcuts for popular models. These can be passed to --model-name
# DINOv2
"vit-s": "dinov2_vits14_reg"
"vit-b": "dinov2_vitb14_reg"
"vit-l": "dinov2_vitl14_reg"
"vit-g": "dinov2_vitg14_reg"
# SigLIP2
"siglip2": "hf-hub:timm/ViT-B-16-SigLIP2-512"
"siglip2-so400m-384": "hf-hub:timm/ViT-SO400M-16-SigLIP2-384"
"siglip2-so400m-512": "hf-hub:timm/ViT-SO400M-16-SigLIP2-512"
"siglip2-b16-256": "hf-hub:timm/ViT-B-16-SigLIP2-256"
"siglip2-b16-512": "hf-hub:timm/ViT-B-16-SigLIP2-512"
"siglip2-b32-256": "hf-hub:timm/ViT-B-32-SigLIP2-256"
"siglip2-b32-512": "hf-hub:timm/ViT-B-32-SigLIP2-512"
# CLIP
"clip": "hf-hub:timm/vit_base_patch16_clip_224.openai"
Setting input size fixes the resolution for all inputs. This is useful for processing HD videos, and mandatory for batch processing of image folders.
# Processing a HD video faster:
dinotool input.mp4 -o output.mp4 --input-size 920 540 --batch-size 16
For faster processing, set batch size as large as your GPU memory allows. Batch processing is possible for video files and directories of video frames (following naming where each imagename can be converted to an integer, like 00001.jpg
), where all inputs are assumed to be the same size.
dinotool input.mp4 -o output.mp4 --batch-size 16
For batch processing image folders, --input-size
must be set. Visualization is also not possible.
π¦ DINOtool: Extract and visualize ViT features from images and videos.
Usage:
dinotool input_path -o output_path [options]
Arguments:
input Path to image, video file, or folder of frames.
-o, --output Path for the output (required).
Options:
-s, --save-features MODE Save extracted features: full, flat, or frame
-m, --model-name MODEL Model to use (default: dinov2_vits14_reg)
--input-size W H Resize input before processing. Must be set for batch
processing of image folders
-b, --batch-size N Batch size for faster processing
--only-pca Only visualize PCA features.
--no-vis Only output features with no visualization.
--save features must be set.