DINOtool is a command-line tool for extracting visual features using state-of-the-art foundation models like DINOv3, DINOv2, CLIP, SigLIP2 and AM-RADIO. It supports the extraction global (frame-level) and local (patch-level) features from images, videos and image directories, and can optionally visualize feature maps using PCA.
pip install dinotool
dinotool test.jpg -o out.jpgfrom dinotool import DinoToolModel
from PIL import Image
import matplotlib.pyplot as plt
model = DinoToolModel("dinov3-s") # Unified API for multiple model backends
img = Image.open("../test/data/bird1.jpg")
transform = model.get_transform(img.size) # Loads model-specific transforms
img_tensor = transform.transform(img).unsqueeze(0)
local_features = model(img_tensor)
local_features.tensor.shape # torch.Size([1, 56, 56, 384])
global_features = model(img_tensor, features="frame")
global_features.tensor.shape # torch.Size([1, 384])
plt.imshow(model.pca(local_features)) # PCA visualization-
Works with:
- π· Single images
- ποΈ Video files
- π Folders of images of various sizes and extensions
-
πΎ Outputs standard formats for downstream processing:
- .parquet (global features / local features in a list)
- .zarr / .nc (local features in 2D)
-
π PCA-based visualizations for images and video
- DINOv2
- DINOv3 (Gated model - requires logging in to Hugginface Hub and applying access at each model page)
- SigLIP
- SigLIP 2
- CLIP
- AM-RADIO
List available models and their shortcuts with dinotool --models.
dinotool input.mp4 -o output.mp4produces output:
sintel_out.mp4
Changing the model with --model-name/-m:
dinotool bird.jpg out.jpg --model-name dinov3-suses a different foundation model to extract the features:
Feature vectors can be saved with --save-features.
Processing image directories and extracting global or local features for each image is easy with DINOtool:
dinotool image_folder/ -o global_features --save-features 'frame'produces a global_features.parquet file with global features:
| filename | feature_0 | feature_1 | feature_2 | ... | feature_383 |
|---|---|---|---|---|---|
cat_001.jpg |
0.123 | -0.045 | 0.211 | ... | 0.009 |
dog_002.jpg |
0.097 | 0.033 | 0.187 | ... | -0.012 |
tree_003.jpg |
-0.056 | 0.140 | 0.092 | ... | 0.034 |
car_004.jpg |
0.301 | -0.202 | 0.144 | ... | -0.019 |
Similar files can be also produced for local patch features, for videos etc.
More example commands for different situations can be found in test/test_cases.md
Example of reading output file formats is in docs/reading_outputs.ipynb
Example of using DINOtool as a package is in docs/api_example.ipynb
Example of PCA feature visualization by first masking objects using the first PCA features, similar to DINOv2 demos is in docs/masked_pca_demo.ipynb:
If you do not have ffmpeg installed:
sudo apt install ffmpegInstall via pip:
pip install dinotoolYou can check that dinotool is properly installed by testing it on an image:
dinotool test.jpg -o out.jpgIf you have uv installed, you can simply run DINOtool with
uv run --with dinotool dinotool test.jpg -o out.jpgYou still have to have ffmpeg installed. uvx does not work on linux due to xformers dependencies.
If you want an isolated setup, especially useful for managing ffmpeg and dependencies:
Install Miniforge.
conda create -n dinotool python=3.12
conda activate dinotool
conda install -c conda-forge ffmpeg
pip install dinotool- Windows is supported only for CPU usage. If you want GPU support on Windows, we recommend using WSL2 + Ubuntu, or managing the environment yourself by first installing a GPU torch version and then dinotool.
- The conda method above is recommended for Windows CPU setups.
Extract and visualize DINO features from an image:
dinotool input.jpg -o output.jpgThis produces a .jpg similar to the examples above.
For a easy-to-process Parquet file of the local features without visualization, run
dinotool input.jpg -o out_features --save-features 'flat' --no-visExtract global features from a video using SigLIP2:
dinotool input.mp4 -o features --model-name siglip2 --save-features frameThis produces a features.parquet file with a row for each frame of the video.
Process a folder of images with patch-level output:
dinotool images/ -o results --save-features fullThis produces a folder results with visualization .jpg and a NetCDF file for each image separately.
If the images in the folder can be resized to a fixed size, you can use batch processing by setting a fixed resize size (--input-size W H) and --no-vis:
dinotool images/ -o results2 --save-features 'frame' --input-size 512 512 --batch-size 4 --no-visThis produces a parquet file with global features for each image.
Use --save-features to export features for downstream tasks.
| Mode | Format | Output shape | Best for |
|---|---|---|---|
full |
.nc (image) / .zarr (video, batched image folders) |
(frames, height, width, feature) |
Keeps spatial structure of patches. |
flat |
partitioned .parquet |
(frames * height * width, feature) |
Reliable long video processing. Faster patch-level analysis |
frame |
.parquet |
(frames, feature) |
One global feature vector per frame |
- Saves full patch feature maps from the ViT (one vector per image patch).
- Useful for reconstructing spatial attention maps or for downstream tasks like segmentation.
- Stored as netCDF for single images,
.zarrfor video sequences. zarrsaving can be memory-intensive and might still fail for large videos.
dinotool input.mp4 -o output.mp4 --save-features full- Saves same vectors as above, but discards 2D spatial layout and saves output in
parquetformat. - More reliable for longer videos.
- Useful for faster computations for statistics, patch-level similarity and clustering.
- For single image input saves a
.parquetfile with one row per patch. - For video inputs saves a partitioned
.parquetdirectory, with indices for frames and patches.
dinotool input.mp4 -o output.mp4 --save-features flat- Saves one global feature vector per frame/image.
- Useful for temporal tasks, and creating vector databases.
- For single image input saves a
.txtfile with a single vector - For image folder and video input saves a
.parquetfile with one row per frame/image.
# For a video
dinotool input.mp4 -o output.mp4 --save-features frame
# For an image
dinotool input.jpg -o output.jpg --save-features frameThe output is a side-by-side visualization with PCA of the patch-level features.
List available models and their shortcuts with dinotool --models.
By default, the value passed to --model-name argument is loaded from facebookresearch/dinov2, meaning that the possible DINOv2 models are:
dinov2_vits14dinov2_vitb14dinov2_vitl14dinov2_vitg14
and their reg variants (recommended): i.e. dinov2_vits14_reg.
See the DINOv2 github repo for more information.
DINOv3 models:
Model names with prefix facebook/dinov3/<model name> are downloaded from the DINOv3 respository in Huggingface Hub. See a list of available models here.
[!IMPORTANT]
The DINOv3 models are gated models and need authorized access. You have to apply for access on the model page when logged in to Huggingface, and log in on the HF CLI: hf auth login.
AM-RADIO models:
Model names with prefix NVlabs/RADIO/ are downloaded from the RADIO family of models. See all available models here
OpenCLIP models:
DINOtool supports also ViT models that follow the OpenCLIP/timm model API for feature extraction. These models are for example the SigLIP2 models in Huggingface hub. Additionally, other models in the Hub should also work, but have not been fully tested. These include SigLIP and CLIP models.
The OpenCLIP/timm model name has to be passed in the format hf-hub:timm/<model name>.
Shortcuts:
There are some predefined shortcuts for popular models. These can be passed to --model-name
# DINOv2
"vit-s": "dinov2_vits14_reg"
"vit-b": "dinov2_vitb14_reg"
"vit-l": "dinov2_vitl14_reg"
"vit-g": "dinov2_vitg14_reg"
# SigLIP2
"siglip2": "hf-hub:timm/ViT-B-16-SigLIP2-512"
"siglip2-so400m-384": "hf-hub:timm/ViT-SO400M-16-SigLIP2-384"
"siglip2-so400m-512": "hf-hub:timm/ViT-SO400M-16-SigLIP2-512"
"siglip2-b16-256": "hf-hub:timm/ViT-B-16-SigLIP2-256"
"siglip2-b16-512": "hf-hub:timm/ViT-B-16-SigLIP2-512"
"siglip2-b32-256": "hf-hub:timm/ViT-B-32-SigLIP2-256"
"siglip2-b32-512": "hf-hub:timm/ViT-B-32-SigLIP2-512"
# CLIP
"clip": "hf-hub:timm/vit_base_patch16_clip_224.openai"Setting input size fixes the resolution for all inputs. This is useful for processing HD videos, and mandatory for batch processing of image folders.
# Processing a HD video faster:
dinotool input.mp4 -o output.mp4 --input-size 920 540 --batch-size 16For faster processing, set batch size as large as your GPU memory allows. Batch processing is possible for video files and directories of video frames (following naming where each imagename can be converted to an integer, like 00001.jpg), where all inputs are assumed to be the same size.
dinotool input.mp4 -o output.mp4 --batch-size 16For batch processing image folders, --input-size must be set. Visualization is also not possible.
π¦ DINOtool: Extract and visualize ViT features from images and videos.
Usage:
dinotool input_path -o output_path [options]
Arguments:
input Path to image, video file, or folder of frames.
-o, --output Path for the output (required).
Options:
-s, --save-features MODE Save extracted features: full, flat, or frame
-m, --model-name MODEL Model to use (default: dinov2_vits14_reg)
--input-size W H Resize input before processing. Must be set for batch
processing of image folders
-b, --batch-size N Batch size for faster processing
--only-pca Only visualize PCA features.
--no-vis Only output features with no visualization.
--save features must be set.
-f, --force Force overwrite output file if it exists.
--models List available models and their shortcuts.
--version Show the version of DINOtool.

