-
Notifications
You must be signed in to change notification settings - Fork 0
Rework prepare_for_test #2
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from 6 commits
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -7,25 +7,33 @@ | |
|
||
import math | ||
from types import ModuleType | ||
from typing import cast | ||
from typing import Any, cast | ||
|
||
import numpy as np | ||
import pytest | ||
|
||
from ._utils._compat import ( | ||
array_namespace, | ||
is_array_api_strict_namespace, | ||
is_cupy_namespace, | ||
is_dask_namespace, | ||
is_jax_namespace, | ||
is_numpy_namespace, | ||
is_pydata_sparse_namespace, | ||
is_torch_namespace, | ||
to_device, | ||
) | ||
from ._utils._typing import Array | ||
from ._utils._typing import Array, Device | ||
|
||
__all__ = ["xp_assert_close", "xp_assert_equal"] | ||
__all__ = ["as_numpy_array", "xp_assert_close", "xp_assert_equal", "xp_assert_less"] | ||
|
||
|
||
def _check_ns_shape_dtype( | ||
actual: Array, desired: Array | ||
actual: Array, | ||
desired: Array, | ||
check_dtype: bool, | ||
check_shape: bool, | ||
check_scalar: bool, | ||
) -> ModuleType: # numpydoc ignore=RT03 | ||
""" | ||
Assert that namespace, shape and dtype of the two arrays match. | ||
|
@@ -47,43 +55,67 @@ def _check_ns_shape_dtype( | |
msg = f"namespaces do not match: {actual_xp} != f{desired_xp}" | ||
assert actual_xp == desired_xp, msg | ||
|
||
actual_shape = actual.shape | ||
desired_shape = desired.shape | ||
if is_dask_namespace(desired_xp): | ||
# Dask uses nan instead of None for unknown shapes | ||
if any(math.isnan(i) for i in cast(tuple[float, ...], actual_shape)): | ||
actual_shape = actual.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||
if any(math.isnan(i) for i in cast(tuple[float, ...], desired_shape)): | ||
desired_shape = desired.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||
|
||
msg = f"shapes do not match: {actual_shape} != f{desired_shape}" | ||
assert actual_shape == desired_shape, msg | ||
|
||
msg = f"dtypes do not match: {actual.dtype} != {desired.dtype}" | ||
assert actual.dtype == desired.dtype, msg | ||
if check_shape: | ||
actual_shape = actual.shape | ||
desired_shape = desired.shape | ||
if is_dask_namespace(desired_xp): | ||
# Dask uses nan instead of None for unknown shapes | ||
if any(math.isnan(i) for i in cast(tuple[float, ...], actual_shape)): | ||
actual_shape = actual.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||
if any(math.isnan(i) for i in cast(tuple[float, ...], desired_shape)): | ||
desired_shape = desired.compute().shape # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||
|
||
msg = f"shapes do not match: {actual_shape} != f{desired_shape}" | ||
assert actual_shape == desired_shape, msg | ||
|
||
if check_dtype: | ||
msg = f"dtypes do not match: {actual.dtype} != {desired.dtype}" | ||
assert actual.dtype == desired.dtype, msg | ||
|
||
if is_numpy_namespace(actual_xp) and check_scalar: | ||
# only NumPy distinguishes between scalars and arrays; we do if check_scalar. | ||
_msg = ( | ||
"array-ness does not match:\n Actual: " | ||
f"{type(actual)}\n Desired: {type(desired)}" | ||
) | ||
assert np.isscalar(actual) == np.isscalar(desired), _msg | ||
|
||
return desired_xp | ||
|
||
|
||
def _prepare_for_test(array: Array, xp: ModuleType) -> Array: | ||
def as_numpy_array(array: Array, *, xp: ModuleType) -> np.typing.NDArray[Any]: # type: ignore[explicit-any] | ||
""" | ||
Ensure that the array can be compared with xp.testing or np.testing. | ||
|
||
This involves transferring it from GPU to CPU memory, densifying it, etc. | ||
Convert array to NumPy, bypassing GPU-CPU transfer guards and densification guards. | ||
""" | ||
if is_torch_namespace(xp): | ||
return array.cpu() # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||
if is_cupy_namespace(xp): | ||
return xp.asnumpy(array) | ||
if is_pydata_sparse_namespace(xp): | ||
return array.todense() # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||
|
||
if is_torch_namespace(xp): | ||
array = to_device(array, "cpu") | ||
mdhaber marked this conversation as resolved.
Show resolved
Hide resolved
|
||
if is_array_api_strict_namespace(xp): | ||
# Note: we deliberately did not add a `.to_device` method in _typing.pyi | ||
# even if it is required by the standard as many backends don't support it | ||
return array.to_device(xp.Device("CPU_DEVICE")) # type: ignore[attr-defined] # pyright: ignore[reportAttributeAccessIssue] | ||
# Note: nothing to do for CuPy, because it uses a bespoke test function | ||
return array | ||
cpu: Device = xp.Device("CPU_DEVICE") | ||
array = to_device(array, cpu) | ||
if is_jax_namespace(xp): | ||
import jax | ||
|
||
# Note: only needed if the transfer guard is enabled | ||
cpu = cast(Device, jax.devices("cpu")[0]) | ||
array = to_device(array, cpu) | ||
|
||
return np.asarray(array) | ||
|
||
def xp_assert_equal(actual: Array, desired: Array, err_msg: str = "") -> None: | ||
|
||
def xp_assert_equal( | ||
actual: Array, | ||
desired: Array, | ||
*, | ||
err_msg: str = "", | ||
check_dtype: bool = True, | ||
check_shape: bool = True, | ||
check_scalar: bool = False, | ||
) -> None: | ||
""" | ||
Array-API compatible version of `np.testing.assert_array_equal`. | ||
|
||
|
@@ -95,34 +127,56 @@ def xp_assert_equal(actual: Array, desired: Array, err_msg: str = "") -> None: | |
The expected array (typically hardcoded). | ||
err_msg : str, optional | ||
Error message to display on failure. | ||
check_dtype, check_shape : bool, default: True | ||
Whether to check agreement between actual and desired dtypes and shapes | ||
check_scalar : bool, default: False | ||
NumPy only: whether to check agreement between actual and desired types - | ||
0d array vs scalar. | ||
|
||
See Also | ||
-------- | ||
xp_assert_close : Similar function for inexact equality checks. | ||
numpy.testing.assert_array_equal : Similar function for NumPy arrays. | ||
""" | ||
xp = _check_ns_shape_dtype(actual, desired) | ||
actual = _prepare_for_test(actual, xp) | ||
desired = _prepare_for_test(desired, xp) | ||
xp = _check_ns_shape_dtype(actual, desired, check_dtype, check_shape, check_scalar) | ||
actual_np = as_numpy_array(actual, xp=xp) | ||
desired_np = as_numpy_array(desired, xp=xp) | ||
np.testing.assert_array_equal(actual_np, desired_np, err_msg=err_msg) | ||
|
||
if is_cupy_namespace(xp): | ||
xp.testing.assert_array_equal(actual, desired, err_msg=err_msg) | ||
elif is_torch_namespace(xp): | ||
# PyTorch recommends using `rtol=0, atol=0` like this | ||
# to test for exact equality | ||
xp.testing.assert_close( | ||
actual, | ||
desired, | ||
rtol=0, | ||
atol=0, | ||
equal_nan=True, | ||
check_dtype=False, | ||
msg=err_msg or None, | ||
) | ||
else: | ||
import numpy as np # pylint: disable=import-outside-toplevel | ||
|
||
np.testing.assert_array_equal(actual, desired, err_msg=err_msg) | ||
def xp_assert_less( | ||
x: Array, | ||
y: Array, | ||
*, | ||
err_msg: str = "", | ||
check_dtype: bool = True, | ||
check_shape: bool = True, | ||
check_scalar: bool = False, | ||
) -> None: | ||
""" | ||
Array-API compatible version of `np.testing.assert_array_less`. | ||
|
||
Parameters | ||
---------- | ||
x, y : Array | ||
The arrays to compare according to ``x < y`` (elementwise). | ||
err_msg : str, optional | ||
Error message to display on failure. | ||
check_dtype, check_shape : bool, default: True | ||
Whether to check agreement between actual and desired dtypes and shapes | ||
check_scalar : bool, default: False | ||
NumPy only: whether to check agreement between actual and desired types - | ||
0d array vs scalar. | ||
|
||
See Also | ||
-------- | ||
xp_assert_close : Similar function for inexact equality checks. | ||
numpy.testing.assert_array_equal : Similar function for NumPy arrays. | ||
""" | ||
xp = _check_ns_shape_dtype(x, y, check_dtype, check_shape, check_scalar) | ||
x_np = as_numpy_array(x, xp=xp) | ||
y_np = as_numpy_array(y, xp=xp) | ||
np.testing.assert_array_less(x_np, y_np, err_msg=err_msg) | ||
|
||
|
||
def xp_assert_close( | ||
|
@@ -132,6 +186,9 @@ def xp_assert_close( | |
rtol: float | None = None, | ||
atol: float = 0, | ||
err_msg: str = "", | ||
check_dtype: bool = True, | ||
check_shape: bool = True, | ||
check_scalar: bool = False, | ||
) -> None: | ||
""" | ||
Array-API compatible version of `np.testing.assert_allclose`. | ||
|
@@ -148,6 +205,11 @@ def xp_assert_close( | |
Absolute tolerance. Default: 0. | ||
err_msg : str, optional | ||
Error message to display on failure. | ||
check_dtype, check_shape : bool, default: True | ||
Whether to check agreement between actual and desired dtypes and shapes | ||
check_scalar : bool, default: False | ||
NumPy only: whether to check agreement between actual and desired types - | ||
0d array vs scalar. | ||
|
||
See Also | ||
-------- | ||
|
@@ -159,40 +221,26 @@ def xp_assert_close( | |
----- | ||
The default `atol` and `rtol` differ from `xp.all(xpx.isclose(a, b))`. | ||
""" | ||
xp = _check_ns_shape_dtype(actual, desired) | ||
|
||
floating = xp.isdtype(actual.dtype, ("real floating", "complex floating")) | ||
if rtol is None and floating: | ||
# multiplier of 4 is used as for `np.float64` this puts the default `rtol` | ||
# roughly half way between sqrt(eps) and the default for | ||
# `numpy.testing.assert_allclose`, 1e-7 | ||
rtol = xp.finfo(actual.dtype).eps ** 0.5 * 4 | ||
elif rtol is None: | ||
rtol = 1e-7 | ||
|
||
actual = _prepare_for_test(actual, xp) | ||
desired = _prepare_for_test(desired, xp) | ||
|
||
if is_cupy_namespace(xp): | ||
xp.testing.assert_allclose( | ||
actual, desired, rtol=rtol, atol=atol, err_msg=err_msg | ||
) | ||
elif is_torch_namespace(xp): | ||
xp.testing.assert_close( | ||
actual, desired, rtol=rtol, atol=atol, equal_nan=True, msg=err_msg or None | ||
) | ||
else: | ||
import numpy as np # pylint: disable=import-outside-toplevel | ||
|
||
# JAX/Dask arrays work directly with `np.testing` | ||
assert isinstance(rtol, float) | ||
np.testing.assert_allclose( # type: ignore[call-overload] # pyright: ignore[reportCallIssue] | ||
actual, # pyright: ignore[reportArgumentType] | ||
desired, # pyright: ignore[reportArgumentType] | ||
rtol=rtol, | ||
atol=atol, | ||
err_msg=err_msg, | ||
) | ||
xp = _check_ns_shape_dtype(actual, desired, check_dtype, check_shape, check_scalar) | ||
|
||
if rtol is None: | ||
if xp.isdtype(actual.dtype, ("real floating", "complex floating")): | ||
# multiplier of 4 is used as for `np.float64` this puts the default `rtol` | ||
# roughly half way between sqrt(eps) and the default for | ||
# `numpy.testing.assert_allclose`, 1e-7 | ||
rtol = xp.finfo(actual.dtype).eps ** 0.5 * 4 | ||
else: | ||
rtol = 1e-7 | ||
Comment on lines
+226
to
+233
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. To save microseconds in a test? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. No, it was an attempt to convince pyright. Regardless, I think it's slightly cleaner this way. |
||
|
||
actual_np = as_numpy_array(actual, xp=xp) | ||
desired_np = as_numpy_array(desired, xp=xp) | ||
Comment on lines
+235
to
+236
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Is this fixing a pyright issue? There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. In data-apis#267 all testing becomes done exclusively by numpy. |
||
np.testing.assert_allclose( # pyright: ignore[reportCallIssue] | ||
actual_np, | ||
desired_np, | ||
rtol=rtol, # pyright: ignore[reportArgumentType] | ||
atol=atol, | ||
err_msg=err_msg, | ||
) | ||
|
||
|
||
def xfail( | ||
|
Uh oh!
There was an error while loading. Please reload this page.