Skip to content

markitantov/TRIFONES

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Multi-Lingual Approach for Multi-Modal Emotion and Sentiment Recognition Based on Triple Fusion

Abstract

Affective states recognition is a challenging task that requires a large amount of input data, such as audio, video, and text. Current multi-modal approaches are often single-task and corpus-specific, resulting in overfitting, poor generalization across corpora, and reduced real-world performance. In this work, we address these limitations by: (1) multi-lingual training on corpora that include Russian (RAMAS) and English (MELD, CMU-MOSEI) speech; (2) multi-task learning for joint emotion and sentiment recognition; and (3) a novel Triple Fusion strategy that employs cross-modal integration at both hierarchical unimodal and fused multi-modal feature levels, enhancing intra- and inter-modal relationships of different affective states and modalities. Additionally, to optimize performance of the approach proposed, we compare temporal encoders (Transformer-based, Mamba, xLSTM) and fusion strategies (double and triple fusion strategies with and without a label encoder) to comprehensively understand their capabilities and limitations. On the Test subset of the CMU-MOSEI corpus, the proposed approach showed mean weighted F1-score (mWF) of 88.6%, and weighted F1-score (WF) of 84.8% for emotion and sentiment recognition, respectively. On the Test subset of the MELD corpus, the proposed approach showed WF of 49.6% and WF of 60.0%, respectively. On the Test subset of the RAMAS corpus, the proposed approach showed WF of 71.8% and WF of 90.0%, respectively. We compare the performance of the approach proposed with that of the SOTA ones.

About

The official repository for TRIFONES page

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages